jeudi 22 juin 2017

Crew Studies Bone Loss Reversal and Unloads New Cargo










ISS - Expedition 52 Mission patch.

June 22, 2017

Expedition 52 is continuing to explore a new drug therapy today that may keep humans healthier in space. The trio onboard the International Space Station also worked on standard maintenance activities to keep the orbital complex in ship-shape.

Astronauts living on the station exercise a couple of hours every day to offset the muscle and bone loss experienced in microgravity. A new injectable drug is also being explored as a way to maintain strong bones during spaceflight. Flight Engineers Peggy Whitson and Jack Fischer of NASA are testing that drug today on mice for the fifth version of the ongoing Rodent Research experiment. Rodent Research-5 is testing the drugs ability to stop and reverse bone loss in space and may help patients with bone disease on Earth.


Image above: Astronaut Peggy Whitson checks out new science gear inside the Harmony module. The SpaceX Dragon is attached to the Earth-facing port of Harmony. Image Credit: NASA.

Fischer also worked on light plumbing duties and microbe sampling throughout Thursday. Whitson also worked on microbe sampling and set up life science gear ahead of a new experiment to be delivered on the next SpaceX Dragon cargo mission.

Commander Fyodor Yurchikhin checked out Russian life support gear and continued unloading new gear delivered last week inside the Progress 67 (67P) resupply ship. The veteran cosmonaut also repressurized the station’s atmosphere using oxygen stored inside the 67P.

Related links:

Space Station Research and Technology: https://www.nasa.gov/mission_pages/station/research/index.html

International Space Station (ISS): https://www.nasa.gov/mission_pages/station/main/index.html

Image (mentioned), Text, Credits: NASA/Mark Garcia.

Best regards, Orbiter.ch

Scientists Uncover Origins of the Sun’s Swirling Spicules










NASA - IRIS Mission patch.

June 22, 2017

At any given moment, as many as 10 million wild jets of solar material burst from the sun’s surface. They erupt as fast as 60 miles per second, and can reach lengths of 6,000 miles before collapsing. These are spicules, and despite their grass-like abundance, scientists didn’t understand how they form. Now, for the first time, a computer simulation — so detailed it took a full year to run — shows how spicules form, helping scientists understand how spicules can break free of the sun’s surface and surge upward so quickly.

This work relied upon high-cadence observations from NASA’s Interface Region Imaging Spectrograph, or IRIS, and the Swedish 1-meter Solar Telescope in La Palma, in the Canary Islands. Together, the spacecraft and telescope peer into the lower layers of the sun’s atmosphere, known as the interface region, where spicules form. The results of this NASA-funded study were published in Science on June 22, 2017 — a special time of the year for the IRIS mission, which celebrates its fourth anniversary in space on June 26.

video
Scientists Uncover Origins of Dynamic Jets on Sun's Surface

Video above: Watch the video to learn how scientists used a combination of computer simulations and observations to determine how spicules form. Video Credits: NASA’s Goddard Space Flight Center/Joy Ng, producer.

“Numerical models and observations go hand in hand in our research,” said Bart De Pontieu, an author of the study and IRIS science lead at Lockheed Martin Solar and Astrophysics Laboratory, in Palo Alto, California. “We compare observations and models to figure out how well our models are performing, and to improve the models when we see major discrepancies.”

Observing spicules has been a thorny problem for scientists who want to understand how solar material and energy move through and away from the sun. Spicules are transient, forming and collapsing over the course of just five to 10 minutes. These tenuous structures are also difficult to study from Earth, where the atmosphere often blurs our telescopes’ vision.

A team of scientists has been working on this particular model for nearly a decade, trying again and again to create a version that would create spicules. Earlier versions of the model treated the interface region, the lower solar atmosphere, as a hot gas of electrically charged particles — or more technically, a fully ionized plasma. But the scientists knew something was missing because they never saw spicules in the simulations.

The key, the scientists realized, was neutral particles. They were inspired by Earth’s own ionosphere, a region of the upper atmosphere where interactions between neutral and charged particles are responsible for many dynamic processes.

Sun’s Swirling Spicules. Image Credit: NASA

The research team knew that in cooler regions of the sun, such as the interface region, not all gas particles are electrically charged. Some particles are neutral, and neutral particles aren’t subject to magnetic fields like charged particles are. Scientists had based previous models on a fully ionized plasma in order to simplify the problem. Indeed, including the necessary neutral particles was very computationally expensive, and the final model took roughly a year to run on the Pleiades supercomputer located at NASA’s Ames Research Center in Silicon Valley, and which supports hundreds of science and engineering projects for NASA missions.

The model began with a basic understanding of how plasma moves in the sun’s atmosphere. Constant convection, or boiling, of material throughout the sun generates islands of tangled magnetic fields. When boiling carries them up to the surface and farther into the sun’s lower atmosphere, magnetic field lines rapidly snap back into place to resolve the tension, expelling plasma and energy. Out of this violence, a spicule is born. But explaining how these complex magnetic knots rise and snap was the tricky part.

“Usually magnetic fields are tightly coupled to charged particles,” said Juan Martínez-Sykora, lead author of the study and a solar physicist at Lockheed Martin and the Bay Area Environmental Research Institute in Sonoma, California. “With only charged particles in the model, the magnetic fields were stuck, and couldn’t rise beyond the sun’s surface. When we added neutrals, the magnetic fields could move more freely.”

Neutral particles provide the buoyancy the gnarled knots of magnetic energy need to rise through the sun’s boiling plasma and reach the chromosphere. There, they snap into spicules, releasing both plasma and energy. Friction between ions and neutral particles heats the plasma even more, both in and around the spicules.

With the new model, the simulations at last matched observations from IRIS and the Swedish Solar Telescope; spicules occurred naturally and frequently. The 10 years of work that went into developing this numerical model earned scientists Mats Carlsson and Viggo H. Hansteen, both authors of the study from the University of Oslo in Norway, the 2017 Arctowski Medal from the National Academy of Sciences. Martínez-Sykora led the expansion of the model to include the effects of neutral particles.

Artist's concept of IRIS in Orbit. Image Credit: NASA

The scientists’ updated model revealed something else about how energy moves in the solar atmosphere. It turns out this whip-like process also naturally generates Alfvén waves, a strong kind of magnetic wave scientists suspect is key to heating the sun’s atmosphere and propelling the solar wind, which constantly bathes our solar system and planet with charged particles from the sun.

“This model answers a lot of questions we’ve had for so many years,” De Pontieu said. “We gradually increased the physical complexity of numerical models based on high-resolution observations, and it is really a success story for the approach we’ve taken with IRIS.”

The simulations indicate spicules could play a big role in energizing the sun’s atmosphere, by constantly forcing plasma out and generating so many Alfvén waves across the sun’s entire surface.

“This is a major advance in our understanding of what processes can energize the solar atmosphere, and lays the foundation for investigations with even more detail to determine how big of a role spicules play,” said Adrian Daw, IRIS mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “A very nice result on the eve of our launch anniversary.”

Related links:

Science: http://science.sciencemag.org/content/356/6344/1269.full

IRIS Mission Overview: https://www.nasa.gov/mission_pages/iris/overview/index.html

New Space Weather Model Helps Simulate Magnetic Structure of Solar Storms: https://www.nasa.gov/feature/goddard/2017/new-space-weather-model-helps-simulate-magnetic-structure-of-solar-storms

IRIS (Interface Region Imaging Spectrograph): http://www.nasa.gov/mission_pages/iris/index.html

Images (mentioned), Video (mentioned), Text, Credits: NASA/Rob Garner/Goddard Space Flight Center, by Lina Tran.

Best regards, Orbiter.ch

Jupiter’s Bands of Clouds












NASA - JUNO Mission logo.

June 22, 2017


This enhanced-color image of Jupiter’s bands of light and dark clouds was created by citizen scientists Gerald Eichstädt and Seán Doran using data from the JunoCam imager on NASA’s Juno spacecraft.

Three of the white oval storms known as the “String of Pearls” are visible near the top of the image. Each of the alternating light and dark atmospheric bands in this image is wider than Earth, and each rages around Jupiter at hundreds of miles (kilometers) per hour. The lighter areas are regions where gas is rising, and the darker bands are regions where gas is sinking.

Juno acquired the image on May 19, 2017, at 11:30 a.m. PST (2:30 p.m. EST) from an altitude of about 20,800 miles (33,400 kilometers) above Jupiter's cloud tops.

JunoCam's raw images are available for the public to peruse and process into image products at: http://www.missionjuno.swri.edu/junocam

More information about Juno is at: https://www.nasa.gov/juno and http://missionjuno.swri.edu

Image, Text, Credits: NASA/Tony Greicius/JPL-Caltech/SwRI/MSSS/Gerald Eichstädt/Seán Doran.

Greetings, Orbiter.ch

The White Cliffs of 'Rover'












NASA - Mars Reconnaissance Orbiter (MRO) patch.

June 22, 2017


This image was acquired by the High Resolution Imaging Science Experiment (HiRISE) camera aboard NASA's Mars Reconnaissance Orbiter on April 18, 2017, at 14:04 local Mars time. It reminded the HiRISE team of the rugged and open terrain of a stark shore-line, perhaps of the British Isles. A close-up in enhanced color produces a striking effect, giving the impression of a cloud-covered cliff edge with foamy waves crashing against it.

The reality is that the surface of Mars is much dryer than our imaginations might want to suggest. This is only a tiny part of a much larger structure; an inverted crater—a crater that has been infilled by material that is more resistant to erosion than the rocks around it—surrounded by bluish basaltic dunes. The edge of these elevated light-toned deposits are degraded, irregular and cliff-forming.

Dunes visible below the cliff, give the impression of an ocean surface, complete with foam capped waves crashing against the “shore line,” demonstrating the abstract similarity between the nature of a turbulent ocean and a Martian dune field.

Meridiani Planum has an overall smooth terrain, which starkly contrasts with the more common boulder- and crater-laden landscapes observed over much of the rest of Mars. This makes it relatively younger in character than many other areas of the planet. Meridiani is one of the Mars Exploration Rover landing sites, and, is known for its layers and sediments. The orbital detection of hematite was one of the main reasons for sending Opportunity to this area.

Mars Reconnaissance Orbiter (MRO)

Salt-bearing rocks—also called sulphates—were observed in the very first image from Opportunity, so perhaps it’s apt that this HiRISE image reminds us of the turmoil and rugged beauty of a cliff-face, a coastline, being worn down by a relentless sea.

More information and image products: HiRISE website: http://www.uahirise.org/ESP_050282_1820

NASA’s Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, Calif., manages the Mars Reconnaissance Orbiter for NASA’s Science Mission Directorate, Washington. The HiRISE camera was built by Ball Aerospace and Technology Corporation and is operated by the University of Arizona.

NASA's Mars Reconnaissance Orbiter (MRO): https://www.nasa.gov/mission_pages/MRO/main/index.html

Images, Text,  Credits: NASA/Sarah Loff/JPL/University of Arizona/Caption: Jon Kissi, Livio L. Tornabene, Zach Morse, Eric Pilles and Gavin Tolometti.

Greetings, Orbiter.ch

Laser-targeting A.I. Yields More Mars Science










NASA - Mars Science Laboratory (MSL) logo.

June 22, 2017

Artificial intelligence is changing how we study Mars.

A.I. software on NASA's Curiosity Mars rover has helped it zap dozens of laser targets on the Red Planet this past year, becoming a frequent science tool when the ground team was out of contact with the spacecraft. This same software has proven useful enough that it's already scheduled for NASA's upcoming mission, Mars 2020.

A new paper in Science: Robotics looks at how the software has performed since rolling out to Curiosity's science team in May 2016. The AEGIS software, or Autonomous Exploration for Gathering Increased Science, has been used to direct Curiosity's ChemCam instrument 54 times since then. It's used on almost every drive when the power resources are available for it, according to the paper's authors.

The vast majority of those uses involved selecting targets to zap with ChemCam's laser, which vaporizes small amounts of rock or soil and studies the gas that burns off. Spectrographic analysis of this gas can reveal the elements that make up each laser target.


Image above: This is how AEGIS sees the Martian surface. All targets found by the A.I. program are outlined: blue targets are rejected, while red are retained. The top-ranked target is shaded green; if there's a second-ranked target, it's shaded orange. These NavCam images have been contrast-balanced. Image Credits: NASA/JPL-Caltech.

AEGIS allows the rover to get more science done while Curiosity's human controllers are out of contact. Each day, they program a list of commands for it to execute based on the previous day's images and data. If those commands include a drive, the rover may reach new surroundings several hours before it is able to receive new instructions. AEGIS allows it to autonomously zap rocks that scientists may want to investigate later.

"Time is precious on Mars," said lead author Raymond Francis of NASA's Jet Propulsion Laboratory in Pasadena, California. Francis is the lead system engineer for AEGIS' deployment on the Curiosity rover. "AEGIS allows us to make use of time that otherwise wasn't available because we were waiting for someone on Earth to make a decision."

AEGIS has helped the science team discover a number of interesting minerals. On separate occasions, higher quantities of chlorine and silica were discovered in nearby rocks -- information that helped direct science planning the following day.

"The goal is to provide more information for the science team," said Tara Estlin of JPL, co-author and team lead for AEGIS. "AEGIS has increased the total data coming from ChemCam by operating during times when the rover would otherwise just be waiting for a command."

Before AEGIS was implemented, this downtime was so valuable that the rover was instructed to carry out "blind" targeting of ChemCam. As it was carrying out commands, it would also fire the laser, just to see if it would gather interesting data. But the targeting was limited to a pre-programmed angle, since there was no onboard ability to search for a target.

"Half the time it would just hit soil -- which was also useful, but rock measurements are much more interesting to our scientists," Francis said.

Curiosity ChemCam's laser in action. Animation Credits: NASA/JPL-Caltech

With the intelligent targeting AEGIS affords, Curiosity can be given parameters for very specific kinds of rocks, defined by color, shape and size. The software uses computer vision to search out edges in the landscape; if it detects enough edges, there's a good chance it has found a distinct object, Francis said.

Then the software can rank, filter and prioritize those objects based on the characteristics the science team is looking for.

AEGIS can also be used for fine-scale pointing -- what Francis calls "pointing insurance." When Curiosity's operators aren't quite confident they'll hit a very narrow vein in a rock on the first try, they sometimes use this ability to fine-tune the pointing, though it only came up twice in the past year.

The upcoming Mars 2020 rover will also include AEGIS, which will be included in the next-generation version of ChemCam, called SuperCam. That instrument will also be able to use AEGIS for a remote RAMAN spectrometer that can study the crystal structures of rocks, as well as a visible and infrared spectrometer.

The U.S. Department of Energy's Los Alamos National Laboratory in New Mexico leads the U.S. and French team that jointly developed and operates ChemCam. IRAP is a co-developer and shares operation of the instrument with France's national space agency (CNES), NASA and Los Alamos. JPL, a division of Caltech in Pasadena, California, manages the Curiosity mission for NASA.

Related links:

Curiosity's ChemCam: http://www.msl-chemcam.com/

Mars Science Laboratory (Curiosity): https://www.nasa.gov/mission_pages/msl/index.html

Image (mentioned), Animation (mentioned), Text, Credits: NASA/Tony Greicius/JPL/Andrew Good.

Greetings, Orbiter.ch

mercredi 21 juin 2017

Weekly Recap From the Expedition Lead Scientist, week of June 12, 2017










ISS - Expedition 52 Mission patch.

June 21, 2017

International Space Station (ISS). Animation Credit: NASA

(Highlights: Week of June 12, 2017) - Crew members on the International Space Station installed a recently-delivered science payload that will provide a unique vantage point for Earth observation.

The Multi-User System for Earth Sensing (MUSES) will provide opportunities for imaging payloads supporting research, scientific studies and humanitarian efforts for both government and commercial customers. When fully installed, the MUSES platform will provide a location for Earth-viewing instruments such as high-resolution digital cameras and hyperspectral imagers. It can accommodate up to four payloads simultaneously, and can be robotically serviced or upgraded. MUSES includes a server on the station that can store and transmit data from the payloads back to Earth for a variety of uses including disaster response, maritime domain awareness, agricultural applications, air and water quality, mining and atmospheric investigations.


Image above: Space Center Houston, the official visitors center for NASA's Johnson Space Center, hosted an amateur radio connection with International Space Station crew member Jack Fischer. Image Credit: NASA.

After a thorough check-out of a platform for Earth observation, crew members deployed an investigation looking into deep space. The Neutron Star Interior Composition Explorer (NICER) studies the physics into the glowing cinders left behind when massive stars explode as supernovas. Neutron stars consist of ultra-dense matter that may eventually collapse to a black hole. The nature of this matter cannot be produced in a laboratory and the cosmic rays produced by the phenomena do not penetrate Earth's atmosphere.

Neutron stars are also known as pulsars due to the pattern of X-rays emanating from the explosion. These pulses are reliable as atomic clocks in keeping accurate time, which is essential for accurate deep space navigation. Pulsar navigation could work similarly to GPS navigation on Earth, providing precise positioning for spacecraft throughout the solar system. The NICER investigation also enables new studies of sources of X-rays, advancing scientific understanding, education and technical development for the benefit of people on Earth.


Image above: NASA astronaut Peggy Whitson works on media exchanges for the Cardiac Stem Cells investigation on the space station. Image Credit: NASA.

Crew members replaced some hardware to continue investigations using the Multi-User Droplet Apparatus (MDCA) in the Combustion Integration Rack (CIR) on the space station. The MDCA is used to perform combustion tests using small droplets of various fuels to see how they burn in microgravity. Another round of combustion investigation will begin in the coming weeks to study the most efficient fuels that we could use on Earth and for missions to deep space.

video
Space to Ground: A NICER Look: 06/16/2017

Video above: NASA's Space to Ground is a weekly update on what is happening on the International Space Station. Social media users can post with #spacetoground to ask questions or make a comment. Video Credit: NASA.

Other investigations showing progress this week included Cardiac Stem Cells, Rodent Research-5, Body Measures, Neuromapping, SPRINT and LMM Biophysics.

Related links:

Multi-User System for Earth Sensing (MUSES): https://www.nasa.gov/mission_pages/station/research/experiments/1282.html

Neutron Star Interior Composition Explorer (NICER): https://youtu.be/IOEPDf2DYNM

Multi-User Droplet Apparatus (MDCA): https://issresearchproject.grc.nasa.gov/Investigations/MDCA/

Combustion Integration Rack (CIR): https://spaceflightsystems.grc.nasa.gov/sopo/ihho/psrp/fcf/cir/

Cardiac Stem Cells: https://www.nasa.gov/mission_pages/station/research/experiments/2436.html

Rodent Research-5: https://www.nasa.gov/mission_pages/station/research/experiments/2283.html

Body Measures: https://www.nasa.gov/mission_pages/station/research/experiments/1070.html

Neuromapping: https://www.nasa.gov/mission_pages/station/research/experiments/1007.html

SPRINT: https://www.nasa.gov/mission_pages/station/research/experiments/972.html

LMM Biophysics: https://www.nasa.gov/mission_pages/station/research/experiments/1970.html

Space Station Research and Technology: https://www.nasa.gov/mission_pages/station/research/index.html

International Space Station (ISS): https://www.nasa.gov/mission_pages/station/main/index.html

Images (mentioned), Video (mentioned), Animation (mentioned), Text, Credits: NASA/Kristine Rainey/Jorge Sotomayor, Lead Increment Scientist Expeditions 51 & 52.

Best regards, Orbiter.ch

CASIS Partnership Brings “Organs-on-Chips” Research to Space Station












ISS - International Space Station logo.

June 21, 2017

Models of human disease are beneficial for medical research, but have limitations in predicting the way a drug will behave within the human body using data from non-human models because of inherent differences between species. Many medications produce unexpected outcomes in the clinical trial stage using human subjects, despite success in animal models and even 2-D cell culture models using human cells. The “Organs-on-Chips” approach to human physiology research aboard the International Space Station may lead to more reliable and predictable results for drug development and reduce the need for animal testing.

Five recently announced research projects funded by the National Center for Advancing Translational Sciences (NCATS), part of the National Institutes of Health (NIH), and sponsored by the Center for the Advancement of Science in Space (CASIS), will soon bring “Organs-on-Chips” research to the orbiting laboratory. 

International Space Station (ISS). Image Credit: NASA

Conducting biomedical investigations within the space station’s unique microgravity environment allows researchers to study cells as they grow in 3-D, rather than in the 2-D lab environment on Earth where gravity forces cells in culture to flatten against plastic walls. In addition to the advantages of growing cells into 3-D tissues, cell cultures will also be observed for changes in gene expression, cell communication, and patterns of differentiation that may lead to changes in organs and other body systems.

The research projects include:

- Lung Host Defense in Microgravity (George Worthen, Children’s Hospital of Philadelphia)

- Organs-on-Chips as a Platform for Study the Effects of Microgravity on Human Physiology: Blood-Brain Barrier-Chip in Health and Disease (Christopher Hinojosa, Emulate, Inc.)

- Cartilage-Bone-Synovium Microphysiological System: Musculoskeletal Disease Biology in Space (Alan Grondzinsky, MIT)

- Microgravity as a Model for Immunological Senescense and its Impact on Tissue Stem Cells and Regeneration (Sonja Schrepfer, UCSF)

- Effects of Microgravity on the Structure and Function of Proximal and Distal Tubule Microphysiological System (Jonathan Himmelfarb, U of Washington)

Partnerships like the one between CASIS and NCATS at NIH provide scientists and engineers the unique opportunity to fly their science in space, furthering ground research and bringing space closer to home than ever.

 “The International Space Station is a unique platform for research innovation capable of benefitting life on Earth, but it also has the ability to foster valuable partnerships that enable experimentation for a variety of investigators,” said Patrick O’Neill, marketing and communications manager at CASIS.

“This partnership with the NCATS is part of a multi-year collaboration that will provide investigators the resources required to enhance this burgeoning new research discipline some 250 miles above Earth.”

For more information about the Organs-on-Chips research projects, take a look at the CASIS announcement here. Follow along with the science happening aboard the orbiting laboratory on Twitter at https://twitter.com/ISS_Research

Related links:

National Center for Advancing Translational Sciences (NCATS): https://ncats.nih.gov/

Center for the Advancement of Science in Space (CASIS): http://casis/

National Institutes of Health (NIH): https://www.nih.gov/

Space Station Research and Technology: https://www.nasa.gov/mission_pages/station/research/index.html

International Space Station (ISS): https://www.nasa.gov/mission_pages/station/main/index.html

Image (mentioned), Text, Credits: NASA/ Kristine Rainey/JSC/Jenny Howard.

Greetings, Orbiter.ch

Crew Researching Mice and Microbes to Understand Human Impacts










ISS - Expedition 52 Mission patch.

June 21, 2017

video
Sunset over the Earth from ISS

Video above: Sunset over the Earth, video captured with EarthCam from International Space Station (ISS) via ISS HD Live application. Video Credit: Orbiter.ch Aerospace Studio 2017.

The three orbiting crew members living on the International Space Station today explored the effects of microgravity on mice and microbes to understand how living in space impacts humans. Cargo transfers are also underway on the orbital complex after the arrival of the latest resupply ship.

A pair of life science experiments observing mice are being worked today to research how the weightless environment of space impacts bones, muscles and the immunity system. For the Rodent Research-5 study today, NASA astronauts Peggy Whitson and Jack Fischer observed how drug therapies on mice may offset the negative health impacts of spaceflight. The duo also set up gear for a new study, the Multi-Omics Mouse experiment, which will be launched on the next Space Dragon mission and will evaluate the impacts of space environment and prebiotics on astronauts’ immune function.


Image above: The aurora and the night sky above Earth’s atmosphere are pictured from the space station. A portion of the station’s solar arrays and a pair of nitrogen/oxygen recharge system tanks are pictured in the foreground. Image Credit: NASA.

The crew also collected saliva samples and stowed them in a science freezer for later microbial analysis on Earth. Station surfaces were also swabbed and air samples were taken to help scientists identify the microbes living on the station and how they may change on orbit.

Expedition 52 Commander Fyodor Yurchikhin continued unloading the 3,000 pounds of food, fuel and supplies delivered last week aboard the Progress 67 resupply ship. The veteran station cosmonaut also had some time set aside to update the station’s inventory system and check on Russian science experiments.

Related links:

Rodent Research-5: https://www.nasa.gov/mission_pages/station/research/experiments/2283.html

Space Station Research and Technology: https://www.nasa.gov/mission_pages/station/research/index.html

International Space Station (ISS): https://www.nasa.gov/mission_pages/station/main/index.html

Image (mentioned), Video (mentioned), Text, Credits: NASA/Mark Garcia.

Best regards, Orbiter.ch

Hubble Captures Massive Dead Disk Galaxy that Challenges Theories of Galaxy Evolution












NASA - Hubble Space Telescope patch.

June 21, 2017

By combining the power of a "natural lens" in space with the capability of NASA's Hubble Space Telescope, astronomers made a surprising discovery—the first example of a compact yet massive, fast-spinning, disk-shaped galaxy that stopped making stars only a few billion years after the big bang.

Finding such a galaxy early in the history of the universe challenges the current understanding of how massive galaxies form and evolve, say researchers.

When Hubble photographed the galaxy, astronomers expected to see a chaotic ball of stars formed through galaxies merging together. Instead, they saw evidence that the stars were born in a pancake-shaped disk.


Image above: Acting as a “natural telescope” in space, the gravity of the extremely massive foreground galaxy cluster MACS J2129-0741 magnifies, brightens, and distorts the far-distant background galaxy MACS2129-1, shown in the top box. The middle box is a blown-up view of the gravitationally lensed galaxy. In the bottom box is a reconstructed image, based on modeling that shows what the galaxy would look like if the galaxy cluster were not present. The galaxy appears red because it is so distant that its light is shifted into the red part of the spectrum. Image Credits: NASA, ESA, S. Toft (University of Copenhagen), M. Postman (STScI), and the CLASH team.

This is the first direct observational evidence that at least some of the earliest so-called "dead" galaxies — where star formation stopped — somehow evolve from a Milky Way-shaped disk into the giant elliptical galaxies we see today.

This is a surprise because elliptical galaxies contain older stars, while spiral galaxies typically contain younger blue stars. At least some of these early "dead" disk galaxies must have gone through major makeovers. They not only changed their structure, but also the motions of their stars to make a shape of an elliptical galaxy.

"This new insight may force us to rethink the whole cosmological context of how galaxies burn out early on and evolve into local elliptical-shaped galaxies," said study leader Sune Toft of the Dark Cosmology Center at the Niels Bohr Institute, University of Copenhagen, Denmark. "Perhaps we have been blind to the fact that early "dead" galaxies could in fact be disks, simply because we haven't been able to resolve them."

Previous studies of distant dead galaxies have assumed that their structure is similar to the local elliptical galaxies they will evolve into. Confirming this assumption in principle requires more powerful space telescopes than are currently available. However, through the phenomenon known as "gravitational lensing," a massive, foreground cluster of galaxies acts as a natural "zoom lens" in space by magnifying and stretching images of far more distant background galaxies. By joining this natural lens with the resolving power of Hubble, scientists were able to see into the center of the dead galaxy.


Image above: This artist's concept shows what the young, dead, disk galaxy MACS2129-1, right, would look like when compared with the Milky Way galaxy, left. Although three times as massive as the Milky Way, it is only half the size. MACS2129-1 is also spinning more than twice as fast as the Milky Way. Note that regions of Milky Way are blue from bursts of star formation, while the young, dead galaxy is yellow, signifying an older star population and no new star birth. Image Credits: NASA, ESA, and Z. Levy (STScI).

The remote galaxy is three times as massive as the Milky Way but only half the size. Rotational velocity measurements made with the European Southern Observatory's Very Large Telescope (VLT) showed that the disk galaxy is spinning more than twice as fast as the Milky Way.

Using archival data from the Cluster Lensing And Supernova survey with Hubble (CLASH), Toft and his team were able to determine the stellar mass, star-formation rate, and the ages of the stars.

Why this galaxy stopped forming stars is still unknown. It may be the result of an active galactic nucleus, where energy is gushing from a supermassive black hole. This energy inhibits star formation by heating the gas or expelling it from the galaxy. Or it may be the result of the cold gas streaming onto the galaxy being rapidly compressed and heated up, preventing it from cooling down into star-forming clouds in the galaxy's center.

But how do these young, massive, compact disks evolve into the elliptical galaxies we see in the present-day universe? "Probably through mergers," Toft said. "If these galaxies grow through merging with minor companions, and these minor companions come in large numbers and from all sorts of different angles onto the galaxy, this would eventually randomize the orbits of stars in the galaxies. You could also imagine major mergers. This would definitely also destroy the ordered motion of the stars."

The findings are published in the June 22 issue of the journal Nature. Toft and his team hope to use NASA's upcoming James Webb Space Telescope to look for a larger sample of such galaxies.

Hubble Space Telescope. Animation Credits: NASA/ESA

The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C.

The Very Large Telescope is a telescope facility operated by the European Southern Observatory on Cerro Paranal in the Atacama Desert of Northern Chile.

NASA’s Hubble Website: http://www.nasa.gov/hubble

The science paper by S. Toft et al.: http://rdcu.be/tCml

CLASH Project Website: http://www.stsci.edu/%7Epostman/CLASH/Home.html

ESA's Hubble Website: http://www.spacetelescope.org/

Images (mentioned), Animation (mentioned), Text, Credits: NASA/Karl Hille/ESA/Space Telescope Science Institute/Ann Jenkins/Ray Villard/Dark Cosmology Center, Niels Bohr Institute, University of Copenhagen/Sune Toft.


Best regards, Orbiter.ch

Proba-V images Portuguese forest fire












ESA - Proba-5 Mission logo.

21 June 2017

ESA’s Proba-V minisatellite has captured the forest fire raging in central Portugal, revealing blackened scars and columns of smoke as well as pinpointing active fire hotspots.

Portugal fire

More than a thousand firefighters are tackling the forest fire in the Pedrógão Grande region, north east of Lisbon, which has been aflame since Saturday. Some 64 people have been reported dead and more than 130 injured.

The dammed Zêzere river is seen in the centre of the main image, with burnt scars and fires burning to its north. The village of Nodeirinho – home of many of the casualties – is situated amid the scars.

Before the blaze

The forest fire is believed to have been started by a lightning strike during an intense heatwave. Aircraft have been used to drop water over the Pedrógão Grande region.

Showing details down to 100 m in size, the main image was acquired on Tuesday by Proba-V. Among ESA’s smallest Earth-observing missions, at a cubic metre, Proba-V covers the world’s entire land surface every two days.

Proba-V satellite

Proba-V has a 2250 km-wide field of view with an overall 300 m resolution, narrowing to 100 m at the centre.  A second 330 m-resolution image acquired on Saturday provides a wider context to the blaze.

Regional view of fire

The satellite contributes to Europe’s world-monitoring Copernicus programme, which makes imagery and data freely available to authorities. The V stands for Vegetation – a lighter but fully functional redesign of the camera previously flown on France’s full-sized Spot-4 and Spot-5 satellites.

Launched on 7 May 2013, Proba-V continues the supply of this much-needed information for applications such as assessing climate impact, managing water resources and monitoring crops.

Sentinel-3 images fire

Proba-V’s wide view and polar orbit means it revisits every spot on Earth’s land every two days, building up a new global composite for researchers every 10 days.

More than 1100 registered users in 108 countries are already making use of the satellite.

The Copernicus Sentinel-3 mission has also observed the fire, showing the extent of the burnt area.

Related links:

Proba Missions: http://www.esa.int/Our_Activities/Space_Engineering_Technology/Proba_Missions

In depth: Proba-V: https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/proba-v

Proba-V Mission Exploitation Platform: http://proba-v-mep.esa.int/

Sentinel-3: http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-3

Images, Text, Credits: ESA/P.Carril /Belpso produced by VITO.

Greetings, Orbiter.ch

Gravitational wave mission selected, planet-hunting mission moves forward












ESA - LISA Pathfinder Mission patch.

21 June 2017

The LISA trio of satellites to detect gravitational waves from space has been selected as the third large-class mission in ESA’s Science programme, while the Plato exoplanet hunter moves into development.

These important milestones were decided upon during a meeting of ESA’s Science Programme Committee today, and ensure the continuation of ESA’s Cosmic Vision plan through the next two decades.

Merging black holes

The ‘gravitational universe’ was identified in 2013 as the theme for the third large-class mission, L3, searching for ripples in the fabric of spacetime created by celestial objects with very strong gravity, such as pairs of merging black holes.

Predicted a century ago by Albert Einstein's general theory of relativity, gravitational waves remained elusive until the first direct detection by the ground-based Laser Interferometer Gravitational-Wave Observatory in September 2015. That signal was triggered by the merging of two black holes some 1.3 billion light-years away. Since then, two more events have been detected.

Furthermore, ESA’s LISA Pathfinder mission has also now demonstrated key technologies needed to detect gravitational waves from space. This includes free-falling test masses linked by laser and isolated from all external and internal forces except gravity, a requirement to measure any possible distortion caused by a passing gravitational wave.

The distortion affects the fabric of spacetime on the minuscule scale of a few millionths of a millionth of a metre over a distance of a million kilometres and so must be measured extremely precisely.

LISA concept

LISA Pathfinder will conclude its pioneering mission at the end of this month, and LISA, the Laser Interferometer Space Antenna, also an international collaboration, will now enter a more detailed phase of study. Three craft, separated by 2.5 million km in a triangular formation, will follow Earth in its orbit around the Sun.

Following selection, the mission design and costing can be completed. Then it will be proposed for ‘adoption’ before construction begins. Launch is expected in 2034.

Planet-hunter adopted

In the same meeting Plato – Planetary Transits and Oscillations of stars – has now been adopted in the Science Programme, following its selection in February 2014.

This means it can move from a blueprint into construction. In the coming months industry will be asked to make bids to supply the spacecraft platform.

Searching for exoplanetary systems

Following its launch in 2026, Plato will monitor thousands of bright stars over a large area of the sky, searching for tiny, regular dips in brightness as their planets cross in front of them, temporarily blocking out a small fraction of the starlight.

The mission will have a particular emphasis on discovering and characterising Earth-sized planets and super-Earths orbiting Sun-like stars in the habitable zone – the distance from the star where liquid surface water could exist.

It will also investigate seismic activity in some of the host stars, and determine their masses, sizes and ages, helping to understand the entire exoplanet system.

Plato will operate from the ‘L2’ virtual point in space 1.5 million km beyond Earth as seen from the Sun.

Mission opportunity

The Science Programme Committee also agreed on participation in ESA’s Proba-3 technology mission, a pair of satellites that will fly in formation just 150 m apart, with one acting as a blocking disc in front of the Sun, allowing the other to observe the Sun’s faint outer atmosphere in more detail than ever before.

Proba-3

ESA will also participate in Japan’s X-ray Astronomy Recovery Mission (XARM), designed to recover the science of the Hitomi satellite that was lost shortly after launch last year.

Related links:

ESA’s Cosmic Vision: http://sci.esa.int/cosmic-vision/

ESA’s LISA Pathfinder: http://sci.esa.int/lisa-pathfinder/

ESA’s Proba-3: http://www.esa.int/Our_Activities/Space_Engineering_Technology/Proba_Missions/Proba-3_seeing_through_shadow_to_view_Sun_s_corona

Hitomi satellite: http://sci.esa.int/hitomi/

Images, Text, Credits: ESA/C.Carreau/P. Carril/AEI/Milde Marketing/Exozet.

Best regards, Orbiter.ch

mardi 20 juin 2017

Dragon Packing and BEAM Checks Onboard Station Today










ISS - Expedition 52 Mission patch.

June 20, 2017

The Expedition 52 crew is loading the SpaceX Dragon with cargo for return back to Earth in less than two weeks. BEAM, the experimental habitat, also received a new radiation shield today that was 3D printed aboard the International Space Station.

Dragon is due to leave the International Space Station July 2 after cargo transfers with the resupply ship are complete. The crew offloaded new science experiments, spacewalking gear and station hardware shortly after it arrived on June 5. Dragon will now be packed with used station gear and research samples for analysis by NASA engineers and scientists after it splashes down in the Pacific Ocean.


Image above: NASA astronauts Peggy Whitson and Jack Fischer are pictured packing up gear inside the International Space Station. Image Credit: NASA.

Flight Engineer Jack Fischer opened up BEAM today and entered the expandable activity module for a regular checkup. He replaced an older radiation shield with a thicker shield that covers a radiation sensor inside BEAM. Fischer also sampled BEAM’s air and surfaces for microbes.

Veteran astronaut Peggy Whitson of NASA spent Tuesday sampling the air and surfaces for microbes in the station’s U.S. segment. Whitson also spent some time stowing synthetic DNA samples exposed to radiation in a science freezer and began readying rodent research gear for return next month aboard Dragon.

Related links:

BEAM: https://www.nasa.gov/content/bigelow-expandable-activity-module

Space Station Research and Technology: https://www.nasa.gov/mission_pages/station/research/index.html

International Space Station (ISS): https://www.nasa.gov/mission_pages/station/main/index.html

Image (mentioned), Text, Credits: NASA/Mark Garcia.

Best regards, Orbiter.ch

Changing How Solar Power Rolls












ISS - International Space Station logo.

June 20, 2017

Traditional solar panels used to power satellites can be bulky with heavy panels folded together using mechanical hinges. An experiment that recently arrived at the International Space Station will test a new solar array design that rolls up to form a compact cylinder for launch with significantly less mass and volume, potentially offering substantial cost savings as well as an increase in power for satellites.

Smaller and lighter than traditional solar panels, the Roll-Out Solar Array, or ROSA, consists of a center wing made of a flexible material containing photovoltaic cells to convert light into electricity. On either side of the wing is a narrow arm that extends the length of the wing to provide support, called a high strain composite boom. The booms are like split tubes made of a stiff composite material, flattened and rolled up lengthwise for launch. The array rolls or snaps open without a motor, using stored energy from the structure of the booms that is released as each boom transitions from a coil shape to a straight support arm.


Animation above: The Roll-Out Solar Array (ROSA) was deployed from the end of the Canadarm2 robotic arm Sunday, June 18 outside the International Space Station. ROSA is an experiment to test a new type of solar array that rolls open in space like a party favor and is more compact than current rigid panel designs. Animation Credits: NASA Johnson.

ROSA can be easily adapted to different sizes, including very large arrays, to provide power for a variety of future spacecraft. It also has the potential to make solar arrays more compact and lighter weight for satellite radio and television, weather forecasting, GPS and other services used on Earth. In addition, the technology conceivably could be adapted to provide solar power in remote locations. The technology of the booms has additional potential applications, such as for communications and radar antennas and other instruments.

The ROSA investigation looks at how well this new type of solar panels deploys in the microgravity and extreme temperatures of space. The investigation also measures the array’s strength and durability and how the structure responds to spacecraft maneuvers.

“When the array is attached to a satellite, that spacecraft will need to maneuver, which creates torque and causes the wing, or blanket, to vibrate,” explains principal investigator Jeremy Banik, senior research engineer at the Air Force Research Laboratory, Kirtland Air Force Base in New Mexico. “We need to know precisely when and how it vibrates so as not to lose control of the spacecraft. The only way to test that is in space.”


Image above: Deployed wing image. Image Credits: Deployable Space Systems.

The investigation will monitor the array deployed in full sun and full shade and collect data on how much it vibrates when moving from shade to light. This vibration, known as thermal snap, could present challenges in operating satellites with sensitive functions, and the researchers want to learn how to avoid those challenges with ROSA.

“This structure is very thin, only a few millimeters thick, and heats up very quickly, dozens of degrees in a few seconds,” Banik says. “That creates loads in the wing that could cause it to shudder. That would create problems, for example, if a satellite was trying to take a picture at the same time.”

The investigation will measure power produced by the array to see how ROSA’s thin, crystalline photovoltaic cells hold up during launch. In addition, researchers want to see how the array handles retraction.


Image above: Deployment of the Space Station's Roll Out Solar Array Experiment. Image Credit: NASA.

“We want to show that we can pull the wing back in in a predictable way,” Banik says. “A practical reason is that we have to pull it back for stowage after this investigation, but it will be good to know it can be done for future applications, potentially for a highly maneuverable spacecraft.”

The intent of this investigation, Banik explained, is to compare on-orbit ROSA data to model predictions previously validated by on-ground measurements in a simulated environment.

“Recognize that we are trying to learn how it behaves – this is an experiment and not a demonstration – so we’ll glean useful data even if it doesn’t behave the ways we expect,” Banik said.

Investigators on the ground will initiate video of deployment and retraction, and sensors embedded on the array will record data on photovoltaic performance, temperature, and accelerations.

video
Roll-Out Solar Array Experiment (ROSA) Deploys on International Space Station

Video above: The Roll-Out Solar Array (ROSA) was deployed from the end of the Canadarm2 robotic arm Sunday, June 18 outside the International Space Station. ROSA is an experiment to test a new type of solar array that rolls open in space like a party favor and is more compact than current rigid panel designs. The ROSA investigation tests deployment and retraction,characterizes changes when the Earth blocks the sun, vibration and other physical challenges to determine the array’s strength and durability. ROSA has the potential to replace solar arrays on future satellites, making them more compact and lighter weight. Satellite radio and television, weather forecasting, GPS and other services used on Earth would all benefit from high-performance solar arrays. The payload will remain deployed for seven days before retracting and will be stowed back inside the trunk of SpaceX’s Dragon cargo vehicle. Note: footage of deploy is sped up 300%. Video Credits: NASA Johnson.

“When launching into space, mass and volume are everything, and ROSA is 20 percent lighter and four times smaller in volume than rigid panel arrays,” Banik says. “You realize big cost savings from shaving off a little mass and volume, which makes it possible to raise bandwidth on a communications satellite and, for example, make GPS more accessible and reliable for everyone.”

In other words, this little array could really change how solar power rolls.

ROSA was developed as part of the Solar Electric Propulsion project sponsored by NASA’s Space Technology Mission Directorate. NASA tested the ROSA technology in vacuum chambers on Earth several years ago, and this is its first test in space. This solar array technology was developed to power large spacecraft using highly-efficient electric propulsion on missions to deep space including Mars and the moon.

Related links:

Roll-Out Solar Array, or ROSA: https://www.nasa.gov/mission_pages/station/research/experiments/2139.html

Solar Electric Propulsion project: https://www.nasa.gov/mission_pages/tdm/sep/index.html

Space Station Research and Technology: https://www.nasa.gov/mission_pages/station/research/index.html

International Space Station (ISS): https://www.nasa.gov/mission_pages/station/main/index.html

Images (mentioned), Animation (mentioned), Video (mentioned), Text, Credits: NASA/Jennifer Harbaugh/JSC/Melissa Gaskill.

Best regards, Orbiter.ch

NASA Mars Orbiter Views Rover Climbing Mount Sharp












NASA - Mars Reconnaissance Orbiter (MRO) logo.

June 20, 2017


Image above: The feature that appears bright blue at the center of this scene is NASA's Curiosity Mars rover amid tan rocks and dark sand on Mount Sharp, as viewed by the HiRISE camera on NASA's Mars Reconnaissance Orbiter on June 5, 2017. The rover is about 10 feet long and not really as blue as it looks here. Image Credits: NASA/JPL-Caltech/Univ. of Arizona.

Using the most powerful telescope ever sent to Mars, NASA's Mars Reconnaissance Orbiter caught a view of the Curiosity rover this month amid rocky mountainside terrain.

The car-size rover, climbing up lower Mount Sharp toward its next destination, appears as a blue dab against a background of tan rocks and dark sand in the enhanced-color image from the orbiter's High Resolution Imaging Science Experiment (HiRISE) camera. The exaggerated color, showing differences in Mars surface materials, makes Curiosity appear bluer than it really looks.

The image was taken on June 5, 2017, two months before the fifth anniversary of Curiosity's landing near Mount Sharp on Aug. 5 PDT (Aug. 6, 2017, EDT and Universal Time).

When the image was taken, Curiosity was partway between its investigation of active sand dunes lower on Mount Sharp, and "Vera Rubin Ridge," a destination uphill where the rover team intends to examine outcrops where hematite has been identified from Mars orbit.

The rover's location that day is shown at https://mars.nasa.gov/multimedia/images/2017/curiositys-traverse-map-through-sol-1717 as the point labeled 1717. Images taken that day by Curiosity's Mast Camera (Mastcam) are at https://mars.nasa.gov/msl/multimedia/raw/?s=1717&camera=MAST%5F.

HiRISE obtains images of Curiosity a few times each year. The University of Arizona, Tucson, operates HiRISE, which was built by Ball Aerospace & Technologies Corp., Boulder, Colorado. NASA's Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the Mars Reconnaissance Orbiter Project and Mars Science Laboratory Project for NASA's Science Mission Directorate, Washington.

For more information about NASA's Mars Reconnaissance Orbiter, visit:

https://mars.nasa.gov/mro/

For more information about NASA's Mars Science Laboratory Project and Curiosity, visit:

https://mars.nasa.gov/msl/

Image, Text, Credits: NASA/Laurie Cantillo/Dwayne Brown/Tony Greicius/JPL/Guy Webster.

Best regards, Orbiter.ch

NASA Completes Study of Future ‘Ice Giant’ Mission Concepts











NASA logo.

June 20, 2017

A NASA-led and NASA-sponsored study of potential future missions to the mysterious “ice giant” planets Uranus and Neptune has been released—the first in a series of mission studies NASA will conduct in support of the next Planetary Science Decadal Survey. The results of this and future studies will be used as the Decadal Survey deliberates on NASA’s planetary science priorities from 2022-2032. The study identifies the scientific questions an ice giant mission should address, and discusses various instruments, spacecraft, flight-paths and technologies that could be used.


Image above: Left: Arriving at Uranus in 1986, Voyager 2 observed a bluish orb with subtle features. A haze layer hid most of the planet's cloud features from view. Right: This image of Neptune was produced from Voyager 2 and shows the Great Dark Spot and its companion bright smudge. Image Credits: Left: NASA/JPL-Caltech - Right: NASA.

"This study argues the importance of exploring at least one of these planets and its entire environment, which includes surprisingly dynamic icy moons, rings, and bizarre magnetic fields," said Mark Hofstadter of NASA's Jet Propulsion Laboratory in Pasadena, California, one of the two co-chairs of the science team that produced the report. The European Space Agency (ESA) also participated in the study.

To date, Uranus and Neptune have been visited briefly by one spacecraft, Voyager 2.  Voyager rapidly flew by Uranus in 1986 and Neptune in 1989, as part of its grand tour of discovery that previously took it by Jupiter and Saturn.

Said co-chair Amy Simon of NASA's Goddard Space Flight Center in Greenbelt, Maryland, "We do not know how these planets formed and why they and their moons look the way they do. There are fundamental clues as to how our solar system formed and evolved that can only be found by a detailed study of one, or preferably both, of these planets." 

A variety of potential mission concepts are discussed in the study, including orbiters, flybys, and probes that would dive into Uranus’ atmosphere to study its composition. A narrow-angle camera would send data back to Earth about the ice giants and their moons. Uranus has 27 known moons, while Neptune has 14.

Collectively, Uranus and Neptune are referred to as ice giant planets. In spite of that name, relatively little solid ice is thought to be in them today, but it is believed there is a massive liquid ocean beneath their clouds, which accounts for about two-thirds of their total mass. This makes them fundamentally different from the gas giant planets, Jupiter and Saturn (which are approximately 85 percent gas by mass), and terrestrial planets like Earth or Mars, which are basically 100 percent rock. It’s not clear how or where ice giant planets form, why their magnetic fields are strangely oriented, and what drives geologic activity on some of their moons. These mysteries make them scientifically important, and this importance is enhanced by the discovery that many planets around other stars appear to be similar to our own ice giants.


Image above: Illustration of compositional differences among the giant planets and their relative sizes. Earth is shown for comparison. Jupiter and Saturn are primarily made of hydrogen and helium, the terrestrial planets are almost pure rock, while Uranus and Neptune are thought to be largely supercritical liquid water. Image Credits: JPL/Caltech, based on material from the Lunar and Planetary Institute.

It is now up to the next decadal survey to recommend science priorities for NASA for the next decade. NASA will then determine if and when to fly a mission that is responsive to those priorities.

The full study (529 pages), as well as a short summary are available at:

http://www.lpi.usra.edu/icegiants/mission_study

Related link:

Voyager: https://www.nasa.gov/mission_pages/voyager/index.html

Images (mentioned), Text, Credits: NASA/Tricia Talbert.

Greetings, Orbiter.ch

lundi 19 juin 2017

Station Kicks off Week with Solar Array Study and Biological Research










ISS - Expedition 52 Mission patch.

June 19, 2017

Flying over the Earth. Animation Credit: NASA

Robotics controllers completed the unloading and set up of the third and final external experiment delivered last week aboard the SpaceX Dragon resupply ship. Inside the International Space Station, the Expedition 52 crew studied a variety of life science including plant growth, bone loss and cardiac biology.

Over the weekend, engineers on the ground remotely operated the Canadarm2 to extract the Roll Out Solar Array from Dragon.  The experiment, also known as ROSA, will remain attached to the Canadarm2 over seven days to test the effectiveness of the advanced, flexible solar array that rolls out like a tape measure.


Image above: The Roll Out Solar Array, also known as ROSA, was deployed June 18 from the tip of the Canadarm2. Image Credit: NASA.

Flight Engineer Jack Fischer and Peggy Whitson set up the Seedling Growth-3 botany study today that is researching how plant cells respond to lighting conditions in microgravity. Fischer also installed samples in a NanoRacks facility for an educational research project that is studying the effects of radiation damage on synthetic DNA.

Whitson measured bone loss in mice for the Rodent Research-5 study. Results may improve the health of astronauts living in space and humans on Earth with bone diseases. Whitson later moved onto the Cardiac Stem Cells experiment that seeks to understand the accelerated aging process that takes place in space.

Related links:

Roll Out Solar Array: https://www.nasa.gov/mission_pages/station/research/experiments/2139.html

Seedling Growth-3: https://www.nasa.gov/mission_pages/station/research/experiments/1189.html

Rodent Research-5: https://www.nasa.gov/mission_pages/station/research/experiments/2283.html

Cardiac Stem Cells: https://www.nasa.gov/mission_pages/station/research/experiments/2436.html

Expedition 52: https://blogs.nasa.gov/spacestation/category/expedition-52/

Space Station Research and Technology: https://www.nasa.gov/mission_pages/station/research/index.html

International Space Station (ISS): https://www.nasa.gov/mission_pages/station/main/index.html

Image (mentioned), Animation (mentioned), Text, Credits: NASA/Mark Garcia.

Best regards, Orbiter.ch