vendredi 22 mars 2019

A “muoscope” with CMS technology













CERN - European Organization for Nuclear Research logo.

22 March, 2019

Particle physicists are experts at seeing invisible things and their detecting techniques have already found many applications in medical imaging or the analysis of art works. Researchers from the CMS experiment at the Large Hadron Collider are developing a new application based on one of the experiment’s particle detectors: a new, small-scale, portable muon telescope, which will allow imaging of visually inaccessible spaces.

Earth’s atmosphere is constantly bombarded by particles arriving from outer space. By interacting with atmospheric matter, they decay into a cascade of new particles, generating a flux of muons, heavier cousins of electrons. These cosmic-ray muons continue their journey towards the Earth’s surface, travelling through almost all material objects.


Image above: The resistive plate chambers (RPC) at CMS are fast gaseous detectors that provide a muon trigger system (Image: CERN).

This “superpower” of muons makes them the perfect partners for seeing through thick walls or other visually challenging subjects. Volcanic eruptions, enigmatic ancient pyramids, underground caves and tunnels: these can all be scanned and explored from the inside using muography, an imaging method using naturally occurring background radiation in the form of cosmic-ray muons. 

Large-area muon telescopes have been developed in recent years for many different applications, some of which use technology developed for the LHC detectors. The muon telescope conceived by CMS researchers from two Belgian universities, Ghent University and the Catholic University of Louvain, is compact and light and therefore easy to transport. It is nonetheless able to perform muography at high resolution. It will be the first spin-off for muography using the CMS Resistive Plate Chambers (RPC) technology. A first prototype of the telescope, also baptised a “muoscope”, has been built with four RPC planes with an active area of 16x16 cm. The same prototype was used in the “UCL to Mars” project; it was tested for its robustness in a simulation of Mars-like conditions in the Utah Desert, where it operated for one month and later came back fully functional.

Other CMS technologies have been used in muon tomography for security and environmental protection, as well as for homeland security.

Learn more about the muon telescope here: https://cms.cern/news/cms-technology-used-develop-new-portable-muon-telescope

Note:

CERN, the European Organization for Nuclear Research, is one of the world’s largest and most respected centres for scientific research. Its business is fundamental physics, finding out what the Universe is made of and how it works. At CERN, the world’s largest and most complex scientific instruments are used to study the basic constituents of matter — the fundamental particles. By studying what happens when these particles collide, physicists learn about the laws of Nature.

The instruments used at CERN are particle accelerators and detectors. Accelerators boost beams of particles to high energies before they are made to collide with each other or with stationary targets. Detectors observe and record the results of these collisions.

CERN, the European Organization for Nuclear Research, is one of the world's leading laboratories for particle physics. The Organization is located on the French-Swiss border, with its headquarters in Geneva. Its Member States are: Austria, Belgium, Bulgaria, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Israel, Italy, Netherlands, Norway, Poland, Portugal, Romania, Slovakia, Spain, Sweden, Switzerland and United Kingdom. Cyprus, Serbia and Slovenia are Associate Member States in the pre-stage to Membership. India, Lithuania, Pakistan, Turkey and Ukraine are Associate Member States. The European Union, Japan, JINR, the Russian Federation, UNESCO and the United States of America currently have Observer status.

Related links:

UCL to Mars: http://www.ucltomars.org/

Security and environmental protection: http://cms.cern/content/security-and-environmental-protection

Homeland security: http://cms.cern/content/homeland-security

For more information about European Organization for Nuclear Research (CERN), Visit: https://home.cern/

Image (mentioned), Text, Credits: CERN/Cristina Agrigoroae.

Best regards, Orbiter.ch