mercredi 9 août 2017

Station Boosts Orbit, Dragon Launch Slips a Day










ISS - Expedition 52 Mission patch.

August 9, 2017

Moon Rise From the Space Station

Image above: From his vantage point aboard the International Space Station, NASA astronaut Randy Bresnik pointed his camera toward the rising Moon and captured this beautiful image on August 3, 2017. Bresnik wrote, "Gorgeous moon rise! Such great detail when seen from space. Next full moon marks #Eclipse2017. We’ll be watching from @Space_Station." Image Credit: NASA.

A docked Russian cargo craft fired its engines today slightly raising the orbit of the International Space Station. The orbital boost sets up next month’s crew swap. The SpaceX Dragon cargo craft also received a new target launch date while the crew gets ready for a spacewalk next week.

NASA astronauts Peggy Whitson and Jack Fischer will return to Earth on Sept. 2 with cosmonaut Fyodor Yurchikhin wrapping up their Expedition 52 mission. Fischer and Yurchikhin will each have lived 135 consecutive days in space while Whitson will have 289 days. The next crew, with cosmonaut Alexander Misurkin and astronauts Mark Vande Hei and Joe Acaba, launches Sept. 13 to begin a 167-day mission in space.


Image above: Astronaut Peggy Whitson works on the Combustion Integrated Rack in the U.S. Destiny laboratory module. Image Credit: NASA.

SpaceX announced a one-day launch slip of its Dragon cargo craft atop a Falcon 9 rocket. Dragon is now targeted to launch Monday at 12:31 p.m. EDT from Kennedy Space Center. Fischer and astronaut Paolo Nespoli of the European Space Agency are training for Dragon’s arrival and capture planned for Wednesday at 7 a.m.

Two cosmonauts are also gearing up for a spacewalk amidst the cargo mission and crew swap preparations. The experienced Russian spacewalkers, Yurchikhin with eight career spacewalks and Sergey Ryazanskiy with three, performed leak checks, installed batteries and sized up their Orlan spacesuits and ahead of their Aug. 17 spacewalk.

Related links:

Combustion Integrated Rack: https://www.nasa.gov/mission_pages/station/research/facilities/index.html

SpaceX Dragon: https://www.nasa.gov/spacex

Commercial Resupply: http://www.nasa.gov/mission_pages/station/structure/launch/index.html

Expedition 52: https://www.nasa.gov/mission_pages/station/expeditions/expedition52/index.html

Space Station Research and Technology: https://www.nasa.gov/mission_pages/station/research/index.html

International Space Station (ISS): https://www.nasa.gov/mission_pages/station/main/index.html

Images (mentioned), Text, Credits: NASA/Mark Garcia/Sarah Loff.

Best regards, Orbiter.ch

Cassini to Begin Final Five Orbits Around Saturn












NASA - Cassini Mission to Saturn patch.

Aug. 9, 2017


Image above: This artist's rendering shows Cassini as the spacecraft makes one of its final five dives through Saturn's upper atmosphere in August and September 2017. Image Credits: NASA/JPL-Caltech.

Cassini spacecraft will enter new territory in its final mission phase, the Grand Finale, as it prepares to embark on a set of ultra-close passes through Saturn’s upper atmosphere with its final five orbits around the planet.

Cassini will make the first of these five passes over Saturn at 12:22 a.m. EDT Monday, Aug. 14. The spacecraft's point of closest approach to Saturn during these passes will be between about 1,010 and 1,060 miles (1,630 and 1,710 kilometers) above Saturn's cloud tops.

The spacecraft is expected to encounter atmosphere dense enough to require the use of its small rocket thrusters to maintain stability – conditions similar to those encountered during many of Cassini's close flybys of Saturn's moon Titan, which has its own dense atmosphere.

"Cassini's Titan flybys prepared us for these rapid passes through Saturn's upper atmosphere," said Earl Maize, Cassini project manager at NASA's Jet Propulsion Laboratory (JPL) in California. "Thanks to our past experience, the team is confident that we understand how the spacecraft will behave at the atmospheric densities our models predict."

Maize said the team will consider the Aug. 14 pass nominal if the thrusters operate between 10 and 60 percent of their capability. If the thrusters are forced to work harder – meaning the atmosphere is denser than models predict – engineers will increase the altitude of subsequent orbits. Referred to as a "pop-up maneuver,” thrusters will be used to raise the altitude of closest approach on the next passes, likely by about 120 miles (200 kilometers).

If the pop-up maneuver is not needed, and the atmosphere is less dense than expected during the first three passes, engineers may alternately use the "pop-down" option to lower the closest approach altitude of the last two orbits, also likely by about 120 miles (200 kilometers). Doing so would enable Cassini's science instruments, especially the ion and neutral mass spectrometer (INMS), to obtain data on the atmosphere even closer to the planet's cloud tops.

Cassini Grand Finale. Animation Credits: NASA/JPL-Caltech

"As it makes these five dips into Saturn, followed by its final plunge, Cassini will become the first Saturn atmospheric probe," said Linda Spilker, Cassini project scientist at JPL. "It's long been a goal in planetary exploration to send a dedicated probe into the atmosphere of Saturn, and we're laying the groundwork for future exploration with this first foray."

Other Cassini instruments will make detailed, high-resolution observations of Saturn's auroras, temperature, and the vortexes at the planet's poles. Its radar will peer deep into the atmosphere to reveal small-scale features as fine as 16 miles (25 kilometers) wide – nearly 100 times smaller than the spacecraft could observe prior to the Grand Finale.

On Sept. 11, a distant encounter with Titan will serve as a gravitational version of a large pop-down maneuver, slowing Cassini’s orbit around Saturn and bending its path slightly to send the spacecraft toward its Sept. 15 plunge into the planet.

During the half-orbit plunge, the plan is to have seven Cassini science instruments, including INMS, turned on and reporting measurements in near real time. The spacecraft is expected to reach an altitude where atmospheric density is about twice what it encountered during its final five passes. Once Cassini reaches that point, its thrusters will no longer be able to work against the push of Saturn’s atmosphere to keep the spacecraft's antenna pointed toward Earth, and contact will permanently be lost. The spacecraft will break up like a meteor moments later, ending its long and rewarding journey.

The Cassini-Huygens mission is a cooperative project of NASA, ESA (European Space Agency) and the Italian Space Agency. JPL manages the mission for NASA's Science Mission Directorate in Washington. JPL designed, developed and assembled the Cassini spacecraft.

For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov and http://www.nasa.gov/cassini. The Cassini imaging team homepage is at http://ciclops.org and ESA's website: http://www.esa.int/Our_Activities/Space_Science/Cassini-Huygens

Animation (mentioned), Image (mentioned), Text, Credits: NASA/Felicia Chou/Katherine Brown/JPL/Preston Dyches.

Best regards, Orbiter.ch

RAVAN CubeSat Measures Earth’s Outgoing Energy











NASA logo.

Aug. 9, 2017


Image above: A profile of Earth’s atmosphere and the setting sun as photographed by an Expedition 15 crewmember aboard the International Space Station. Image Credit: NASA.

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth’s climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new technologies that help to measure Earth’s radiation imbalance, which is the difference between the amount of energy from the Sun that reaches Earth and the amount that is reflected and emitted back into space. That difference, estimated to be less than one percent, is responsible for global warming and climate change.


Image above: A fully implemented RAVAN mission entails a constellation of multiple RAVAN satellites distributed around the planet to measure Earth’s outgoing energy globally.
Image Credits: Johns Hopkins University Applied Physics Laboratory/Blue Canyon Technologies.

Designed to measure the amount of reflected solar and thermal energy that is emitted into space, RAVAN employs two technologies that have never before been used on an orbiting spacecraft: carbon nanotubes that absorb outbound radiation and a gallium phase change blackbody for calibration.

Among the blackest known materials, carbon nanotubes absorb virtually all energy across the electromagnetic spectrum. Their absorptive property makes them well suited for accurately measuring the amount of energy reflected and emitted from Earth. Gallium is a metal that melts — or changes phase — at around body temperature, making it a consistent reference point. RAVAN’s radiometers measure the amount of energy absorbed by the carbon nanotubes, and the gallium phase change cells monitor the stability of the radiometers.

RAVAN began collecting and sending radiation data on Jan. 25 and has now been in operation for well past its original six-month mission timeframe.

“We’ve been making Earth radiation measurements with the carbon nanotubes and doing calibrations with the gallium phase change cells, so we’ve successfully met our mission objectives,” said Principal Investigator Bill Swartz of Johns Hopkins Applied Physics Laboratory in Laurel, Maryland. He and his team are now monitoring RAVAN in the longer term to see how much the instrument changes over time and are also performing data analysis and comparing its measurements with existing model simulations of outgoing Earth radiation.

While the technology demonstration comprises a single CubeSat, in practice a future RAVAN mission would operate many CubeSats in a constellation. Instruments for measuring Earth’s outgoing energy are currently housed aboard a few large satellites, and while they have a high spatial resolution they cannot observe the entire planet simultaneously the way a constellation of RAVAN CubeSats could, Swartz explained.

“We know that outgoing radiation from Earth varies widely over time depending on variables such as clouds or aerosols or temperature changes,” Swartz said. “A constellation can provide a global, 24/7 coverage that would improve these measurements.” 
"This successful technology demonstration realizes the potential of a new observation scenario to get at a very difficult measurement using constellation missions,” said Charles Norton, program area associate for the Earth Science Technology Office (ESTO) at NASA’s Jet Propulsion Laboratory in Pasadena, California. “In terms of its impact for CubeSats and Smallsats for NASA, I think It has helped to bring forward another example of how this platform can be successfully used for technology maturation, validation and science."


Image above: Radiometer Assessment using Vertically Aligned Nanotubes, or RAVAN, is a 3-unit CubeSat that successfully demonstrated new technologies for measuring the amount of reflected solar and thermal energy that is emitted into space. These observations have the potential to improve spaceborne measurements of Earth’s energy imbalance. Image Credits: Johns Hopkins University Applied Physics Laboratory.

RAVAN and other Earth science CubeSat missions are funded and managed by NASA’s Earth Science Technology Office (ESTO) in the Earth Science Division. ESTO supports technologists at NASA centers, industry and academia to develop and refine new methods for observing Earth from space, from information systems to new components and instruments.

Small satellites, including CubeSats, are playing an increasingly larger role in exploration, technology demonstration, scientific research and educational investigations at NASA, including: planetary space exploration; Earth observations; fundamental Earth and space science; and developing precursor science instruments like cutting-edge laser communications, satellite-to-satellite communications and autonomous movement capabilities.

Related links:

Climate: https://www.nasa.gov/subject/3127/climate

Earth Science Technology Office (ESTO): https://esto.nasa.gov/

Small satellites: https://www.nasa.gov/smallsats

CubeSats: http://www.nasa.gov/cubesats/

Goddard Space Flight Center: https://www.nasa.gov/centers/goddard/home/index.html

Ames Research Center: https://www.nasa.gov/centers/ames/home/index.html

Images (mentioned), Text, Credits: NASA/Sara Blumberg/​NASA's Earth Science Team, by Samson Reiny.

Greetings, Orbiter.ch

mardi 8 août 2017

NASA’s Scientific Balloon Program Reaches New Heights











NASA - Balloon Program Office logo.

Aug. 8, 2017

For decades, NASA has released enormous scientific balloons into Earth’s atmosphere, miles above the altitude of commercial flights. The Balloon Program is currently preparing new missions bearing sensitive instruments, including one designed to investigate the birth of our universe and another with ballooning origins that will fly on the International Space Station.

NASA’s Primordial Inflation Polarization Explorer (PIPER), which will launch a series of test flights over the next few years, could confirm the theory that our nascent universe expanded by a trillion trillion (1024) times immediately following the big bang. This rapid inflation would have shaken the fabric of space-time, generating ripples called gravitational waves. These waves, in turn, should have produced detectable distortions in the cosmic microwave background (CMB), the earliest light in the universe lengthened into microwaves today by cosmic expansion. The patterns will appear in measurements of how the CMB light is organized, a property called polarization. Discovering twisting, pinwheel-like polarization patterns in the CMB will prove inflation occurred and take astrophysicists back to the brink of the big bang.


Image above: Al Kogut, an astrophysicist at NASA Goddard, poses with one of the millimeter-wave telescopes for the Primordial Inflation Polarization Explorer (PIPER) balloon mission. Image Credits: NASA's Goddard Space Flight Center/Bill Hrybyk.

While Albert Einstein’s theories accurately describe gravity in today’s dilated cosmos, these large-scale physical laws did not apply when our universe was still the size of a hydrogen atom. To reconcile this disparity, PIPER will map the entire sky at four different frequencies, differentiating between twisting patterns in the CMB (indicating primordial gravitational waves) and different polarization signals due to interstellar dust. To maintain sensitivity, the telescope will fly immersed in a bucket of liquid helium the size of a hot tub but much cooler — nearly 457 degrees below zero Fahrenheit (minus 272 degrees Celsius) and close to absolute zero, the coldest temperature possible.

The PIPER mission was designed, built and tested at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, in collaboration with Johns Hopkins University in Baltimore, the University of British Columbia, Canada, the National Institute of Standards and Technology at Boulder, Colorado, and Cardiff University in Wales.

“We’re hoping to gain insight into our early universe as it expanded from subatomic size to larger than a planet in less than a second,” said Goddard's Al Kogut, PIPER's principal investigator. “Understanding inflation also augments our knowledge of high-energy particle physics, where the forces of nature act indistinguishably from one another.”

While PIPER prepares to observe roughly 20 miles above Earth, the latest iteration of the Cosmic Ray Energetics and Mass (CREAM) experiment is scheduled to launch to the space station in August. Although CREAM was balloon-borne during its six prior missions, the current payload will take the technology past Earth’s atmosphere and into space. CREAM will directly sample fast-moving matter from outside the solar system, called cosmic rays, from its new vantage point on the Japanese Experiment Module - Exposed Facility.

Cosmic rays are high-energy particles traveling at near the speed of light that constantly shower Earth. But precisely how they originate and accelerate through space requires more study, as does their abrupt decline at energies higher than 1,000 trillion electron volts. These particles have been boosted to more than 100 times the energy achievable by the world's most powerful particle accelerator, the Large Hadron Collider at CERN.

CREAM — about the size of a refrigerator — will carry refurbished versions of the silicon charge detectors and ionization calorimeter from the previous balloon missions over Antarctica. The orbital edition of CREAM will contain two new instruments: the top/bottom counting detectors, contributed by Kyungpook National University in Daegu, South Korea, and a boronated scintillator detector to distinguish electrons from protons, constructed by a team from Goddard, Pennsylvania State University in University Park and Northern Kentucky University in Highland Heights.


Image above: From its new vantage point on the International Space Station's Japanese Experiment Module - Exposed Facility, the Cosmic Ray Energetics and Mass (CREAM) mission, shown in the inset illustration, will study cosmic rays to determine their sources and acceleration mechanisms. Image Credit: NASA.

The international collaboration, led by physicist Eun-Suk Seo at the University of Maryland, College Park, includes teams from numerous institutions in the United States as well as collaborating institutions in the Republic of Korea, Mexico and France. Overall management and integration of the experiment was led by NASA’s Wallops Flight Facility on Virginia’s Eastern Shore under the direction of Linda Thompson, the CREAM Project Manager.

According to co-investigator Jason Link, a University of Maryland, Baltimore County research scientist working at Goddard, CREAM’s evolution demonstrates the power of NASA’s Balloon Program as a developmental test bed for space instrumentation.

“A balloon mission can go from an idea in a scientist’s head to a flying payload in about five years,” Link said. “In fact, many scientists who design experiments for space missions get their start in ballooning. It’s a powerful training ground for researchers and engineers.”

As is true with any complex mission, things don’t always go as planned. Such was the case for the Balloon Experimental Twin Telescope for Infrared Interferometer (BETTII) experiment, intended to investigate cold objects emitting light in the far-infrared region of the electromagnetic spectrum.

BETTII launched on June 8 from NASA’s Columbia Scientific Balloon Facility in Palestine, Texas. Although nearly all the mission components functioned as they should, the payload detached from its parachute and fell 130,000 feet in 12 minutes as the flight ended the following day.

BETTII Principal Investigator Stephen Rinehart at Goddard estimates it will take several years to secure funding and rebuild the mission.


Image above: This illustration shows the Balloon Experimental Twin Telescope for Infrared Interferometer (BETTII) ascending into the upper atmosphere. The experiment was severely damaged on June 9, when the payload detached from its parachute and fell. Image Credits: NASA's Goddard Space Flight Center Conceptual Image Lab/Michael Lentz.

Designed, assembled and tested at Goddard in collaboration with the University of Maryland, Johns Hopkins University, Cardiff University, University College London and the Far-Infrared Interferometric Telescope Experiment team in Japan, BETTII is designed to examine lower infrared frequencies with unprecedented resolution. While optical telescopes like Hubble cannot see stars shrouded by thick dust clouds, far-infrared observations pierce the veil, revealing how these objects form and evolve.

“BETTII is one of the more complex balloon experiments ever flown,” Rinehart said. “As a research community, we understand that this risk is necessary for the scientific and technical progress we make with balloons.”

After all, just as risk and failure go hand in hand, so do risk and reward.

For more information about NASA’s Balloon Program, visit: https://www.nasa.gov/scientificballoons

Related links:

Primordial Inflation Polarization Explorer (PIPER): https://www.nasa.gov/feature/goddard/2016/piper-balloon-observatory-to-showcase-pioneering-nasa-developed-technologies

Balloon Experimental Twin Telescope for Infrared Interferometer (BETTII): https://asd.gsfc.nasa.gov/bettii/

European Organization for Nuclear Research (CERN): http://home.cern/

Goddard Space Flight Center: https://www.nasa.gov/centers/goddard/home/index.html

International Space Station (ISS): https://www.nasa.gov/mission_pages/station/main/index.html

Images (mentioned), Text, Credits: NASA/Rob Garner/Goddard Space Flight Center, by Raleigh McElvery.

First antiprotons in ELENA












CERN - European Organization for Nuclear Research logo.

8 Aug 2017


Image above: The new deceleration ring ELENA will slow down antimatter particles further than ever to improve the efficiency of experiments studying antimatter. (Image: Maximilien Brice/CERN).

On 2 August, the first 5.3 MeV antiproton beam coming from CERN’s Antiproton Decelerator (AD) circulated in the Extra Low ENergy Antiproton (ELENA) decelerating ring.

ELENA is the new decelerator for antimatter experiments. It has a circumference of just 30 meters and will be connected to the AD experiments to improve the conditions for typical antimatter experiments. The slower the antiprotons are (i.e. the less energy they have), the easier it is for the AD’s antimatter experiments to study or manipulate them. However, the AD decelerator can reliably only slow antiprotons down to 5.3 MeV, the lowest possible energy for a machine of this size. The much smaller ELENA ring will reduce this energy by 50 times, to just 0.1 MeV, opening up the possibility for additional experiments, such as GBAR. In addition, the density of the beams will be improved, thus increasing the efficiency with which the experiments can capture the antiprotons in their traps by a factor of 10 to 100. The new decelerator will also enable several experiments to receive antiproton beams simultaneously.

This is not the first time that a beam has circulated in ELENA. The first tests began last November, but this is the first time that antiprotons, the particle type this machine has been conceived for, have been injected. The beam of antiprotons has been successfully injected and it has been observed circulating for a few milliseconds (that is, a few thousand turns of the machine).

The commissioning of the machine will continue over the next coming months with setting-up of several systems such as the radio-frequency system, which will be used to decelerate the bunches of antiprotons. At that point, the commissioning team will start changing the energy of the beams. At the same time, a series of general adjustments of the beam optics is as well foreseen.

As antiprotons are difficult to produce and they need to be shared among many experiments,  progress in the commissioning of ELENA will also be made using protons and ions coming from a local H ion and proton source.  This useful feature is speeding up the commissioning phase and within the next weeks ELENA will be ready to provide first H- beams for tests to the GBAR experiment.

Note:

CERN, the European Organization for Nuclear Research, is one of the world’s largest and most respected centres for scientific research. Its business is fundamental physics, finding out what the Universe is made of and how it works. At CERN, the world’s largest and most complex scientific instruments are used to study the basic constituents of matter — the fundamental particles. By studying what happens when these particles collide, physicists learn about the laws of Nature.

The instruments used at CERN are particle accelerators and detectors. Accelerators boost beams of particles to high energies before they are made to collide with each other or with stationary targets. Detectors observe and record the results of these collisions.

Founded in 1954, the CERN Laboratory sits astride the Franco–Swiss border near Geneva. It was one of Europe’s first joint ventures and now has 22 Member States.

Related link:

Extra Low ENergy Antiproton (ELENA): http://home.cern/about/updates/2016/11/new-ring-slow-down-antimatter

For more information about European Organization for Nuclear Research (CERN), Visit: http://home.cern/

Image (mentioned), Text, Credits: CERN/Stefania Pandolfi.

Best regards, Orbiter.ch

Research to Advance Disease Therapies, Understand Cosmic Rays Among Cargo Headed to Space Station












SpaceX - CRS-12 Dragon Mission logo.

Aug. 8, 2017

The SpaceX Dragon cargo spacecraft is targeted for launch August 13 from Kennedy Space Center for its twelfth commercial resupply (CRS-12) mission to the International Space Station.

The flight will deliver investigations and instruments that study cosmic rays, protein crystal growth, stem cell-mediated recellularization and a nanosateliite technology demonstration. The vehicle will also deliver crew supplies and equipment to crew members living aboard the station.

Here are some highlights of research that will be delivered:

Investigation studies cosmic rays


Image above: Existing CREAM hardware used for balloon flights. The origins of cosmic rays and the mechanisms that accelerate them to high speeds are among the oldest questions in modern astrophysics. Results from CREAM bring the science community closer to answering those questions, and build a stronger understanding of the fundamental structure of the universe. Image Credit: NASA.

Cosmic rays reach Earth from far outside the solar system with energies well beyond what man-made accelerators can achieve. The Cosmic Ray Energetics and Mass (CREAM) instrument, attached to the Japanese Experiment Module Exposed Facility, measures the charges of cosmic rays ranging from hydrogen to iron nuclei. The data collected from the CREAM instrument will be used to address fundamental science questions such as:

• Do supernovae supply the bulk of cosmic rays?

• What is the history of cosmic rays in the galaxy?

• Can the energy spectra of cosmic rays result from a single mechanism?

Tested in several long duration balloon flights, the CREAM instrument holds the longest known exposure record for a single balloon-borne experiment at approximately 160 days of exposure. CREAM’s three-year mission will help the scientific community build a stronger understanding of the fundamental structure of the universe.

Microgravity-grown protein crystals aid in understanding of Parkinson’s disease

The microgravity environment of the space station allows protein crystals to grow larger and in more perfect shapes than earth-grown crystals, allowing them to be better analyzed on Earth. Developed by the Michael J. Fox Foundation, Anatrace and Com-Pac International, the Crystallization of Leucine-rich repeat kinase 2 (LRRK2) under Microgravity Conditions (CASIS PCG 7) investigation will use the orbiting laboratory’s microgravity environment to grow larger versions of this important protein, implicated in Parkinson’s disease.


Image above: NASA Astronaut Jack Fischer works within the Japanese Experiment Module on CASIS PCG 6. CASIS PCG 7 will utilize the orbiting laboratory’s microgravity environment to grow larger versions of Leucine-rich repeat kinase 2 (LRRK2), implicated in Parkinson’s disease. Image Credit: NASA.

Defining the exact shape and morphology of LRRK2 would help scientists to better understand the pathology of Parkinson’s and aid in the development of therapies against this target.

Telescope-hosting nanosatellite tests new concept

The Kestrel Eye (NanoRacks-KE IIM) investigation is a microsatellite carrying an optical imaging system payload. This investigation validates the concept of using microsatellites in low-Earth orbit to support critical operations, such as providing lower-cost Earth imagery in time-sensitive situations such as tracking severe weather and detecting natural disasters.

Sponsored by the space station U.S. National Laboratory, the overall mission goal for the investigation is to demonstrate that small satellites are viable platforms for providing critical path support to operations and hosting advanced payloads.

Growth of lung tissue in space could provide information about disease pathology

The Effect of Microgravity on Stem Cell Mediated Recellularization (Lung Tissue) uses the microgravity environment of space to test strategies for growing new lung tissue. Using bioengineering techniques, the Lung Tissue investigation cultures different types of lung cells in controlled conditions aboard the space station. The cells are grown in a specialized framework that supplies them with critical growth factors so that scientists can observe how gravity affects growth and specialization as cells become new lung tissue.


Image above: Human lung scaffold pieces can be made for use as a scaffold to support growth of bioengineered lung for research studies like Lung Tissue. The cells are grown in a specialized framework that supplies them with critical growth factors so that scientists can observe how gravity affects growth and specialization as cells become new lung tissue. Image Credits: Joan Nichols, UTMB.

Tissue mimic models such as this also have the potential to be used for assessing drug or chemical toxicity by biotechnology and pharmaceutical companies and could allow for rapid testing of new chemicals and compounds, considerably lowering the overall costs for research and development of new drugs. The ultimate goal of this investigation is to produce bioengineered human lung tissue that can be used as a predictive model of human responses allowing for the study of lung development, lung physiology or disease pathology.

ISS National Lab SpaceX CRS-12 Payload Overview

Video Credits: NASA/Center for the Advancement of Science In Space.

These investigations and others launching aboard CRS-12 will join many other investigations currently happening aboard the space station. Follow https://twitter.com/ISS_Research for more information about the science happening on station.

Related links:

Cosmic Ray Energetics and Mass (CREAM): https://www.nasa.gov/mission_pages/station/research/experiments/1114.html

CASIS PCG 7: https://www.nasa.gov/mission_pages/station/research/experiments/2295.html

NanoRacks-KE IIM: https://www.nasa.gov/mission_pages/station/research/experiments/2163.html

Lung Tissue: https://www.nasa.gov/mission_pages/station/research/experiments/2399.html

Space Station Research and Technology: https://www.nasa.gov/mission_pages/station/research/index.html

Commercial Resupply: http://www.nasa.gov/mission_pages/station/structure/launch/index.html

International Space Station (ISS): https://www.nasa.gov/mission_pages/station/main/index.html

Images (mentioned), Video (mentioned), Text, Credits: NASA/Kristine Rainey/JSC/Jenny Howard International Space Station Program Science Office.

Best regards, Orbiter.ch

NASA Studies Tethered CubeSat Mission to Study Lunar Swirls












NASA - Goddard Space Flight Center logo.

Aug. 8, 2017

A novel mission concept involving two CubeSats connected by a thin, miles-long tether could help scientists understand how the moon got its mysterious “tattoos” — swirling patterns of light and dark found at more than 100 locations across the lunar surface.

NASA’s Planetary Science Deep Space SmallSat Studies, or PSDS3, program recently selected a team at the Goddard Space Flight Center in Greenbelt, Maryland, to further develop a mission concept called the Bi-sat Observations of the Lunar Atmosphere above Swirls, or BOLAS. The study, led by Goddard Principal Investigator Timothy Stubbs, could lead to the first tethered planetary CubeSat mission, Stubbs said.

“This is an exciting concept,” said Michael Collier, a BOLAS co-investigator who has studied tether-based missions for gathering difficult-to-obtain lunar measurements since 2015. “Candidly, I think it’s groundbreaking. Tethered satellites are a very natural approach for targeting lunar science.”

As currently conceived, the mission would involve two 12-unit CubeSats, whose individual units would measure just four inches on a side. Once the pair reached a low-maintenance, quasi-stable orbit about 62 miles above the moon’s surface, the two, connected by a 112-mile-long thin tether, would separate. The top satellite would climb 118 miles above the surface, while the lower, nearly identical twin would plunge to an altitude of about six miles above the surface.


Image above: This artist’s drawing shows how two CubeSats, connected by a miles-long tether, would gather measurements on the moon. Image Credit: NASA.

“The tension in the tether keeps the CubeSats in vertical alignment as they orbit,” Stubbs said. “The configuration, with the center-of-mass in a quasi-stable orbit, should enable the lower CubeSat to fly for long durations at low altitudes.”

Without a tether system, a comparable low-altitude mission would need prohibitive amounts of fuel to maintain its orbit. NASA’s Lunar Reconnaissance Orbiter, or LRO, for example, flew in a circular orbit 31 miles above the surface early in its mission. If NASA hadn’t executed propulsive maneuvers to maintain this orbit, the spacecraft would have smashed into the surface.

This is due to the large concentrations of mass lurking on the lunar surface. These “mascons” change the gravity field and can either pull the spacecraft or push them off course, dooming them to a mission-ending collision.

“For planetary objects that lack an atmosphere, tethering is an innovative approach to the technical challenge of low-altitude measurements using minimal propellant,” Collier said, adding that a CubeSat couldn’t carry the amount of fuel needed to carry out periodic station-keeping maneuvers.

For scientists attempting to better understand the moon’s odd, airless environment, the lower they can deploy the CubeSat, the better.

Equipped with a nearly identical suite of miniaturized instruments, including spectrometers and imagers already advanced by BOLAS co-investigators and collaborators, the twin satellites would characterize the lunar hydrogen cycle from both a low and high altitude. “There is a lot of science you can do with this instrument suite,” Stubbs said, adding that the team plans to leverage subsystems developed by Kentucky’s Morehead State University, which is leading NASA’s Lunar IceCube mission. Lunar IceCube will prospect for lunar volatiles and water during its six months in lunar orbit.

During its proposed one year in orbit, the BOLAS instruments would characterize the mechanisms for hydrogen implantation on the moon’s surface as well as their dependence on the moon’s composition, regolith, local topography, plasma conditions, time of day, and magnetic fields within the crust.

One of the mission’s primary goals is understanding the formation of lunar swirls — the odd markings of light and dark that look almost as if they were painted on the surface of the moon — and the role that magnetic anomalies and space weathering could play in their creation.

Observations indicate that the swirls appear where ancient bits of magnetic field are embedded in the lunar crust. They also show that the bright areas appear to be less weathered than their surroundings. Several phenomena can cause material exposed to space to change both physically and chemically, resulting in darkening over time, including solar wind and micrometeoroid impacts.


Image above: Lunar swirls, such as the Reiner-Gamma swirl imaged by NASA’s Lunar Reconnaissance Orbiter, are strange markings on the moon that a conceptual CubeSat mission would study. Image Credit: NASA.

Those clues have led to three prominent theories about their formation.

One theory suggests that the swirls and the magnetic fields both formed from plumes of material ejected by comet impacts. Another hypothesis states that when micrometeoroid bombardment lofts the moon’s fine dust particles, an existing magnetic field over the swirls sorts them according to their susceptibility to magnetism, forming light and dark patterns with different compositions. And another theory postulates that since particles in the million-mile-per-hour solar wind are electrically charged, they respond to magnetic forces. Perhaps the magnetic field shields the surface from weathering by the solar wind.

Observations from NASA’s LRO lend credence to the magnetic-shield hypothesis, scientists say. However, no one is ruling out anything yet.

Until scientists launch a mission capable of carrying out close-to-the-ground global measurements, a definitive answer isn’t likely, Collier said. However, he believes the two-satellite BOLAS mission could provide the data the scientific community needs.

“This could be a paradigm shift,” Collier said. “All indications show that this mission can be done with existing technology.”

Small satellites, including CubeSats, are playing an increasingly larger role in exploration, technology demonstration, scientific research and educational investigations at NASA, including: planetary space exploration; Earth observations; fundamental Earth and space science; and developing precursor science instruments like cutting-edge laser communications, satellite-to-satellite communications and autonomous movement capabilities.

For more technology news, go to https://gsfctechnology.gsfc.nasa.gov/newsletter/Current.pdf

CubeSats: http://www.nasa.gov/cubesats/

Small Satellite Missions: http://www.nasa.gov/mission_pages/smallsats

Images (mentioned), Text, Credits: NASA/Lynn Jenner/Goddard Space Flight Center, by Lori Keesey.

Greetings, Orbiter.ch