vendredi 21 décembre 2018

Successful launch of a Proton-M launch vehicle with a Russian spacecraft for the Ministry of Defense













ROSCOSMOS logo.

December 21, 2018

Proton-M carrying Blagovest No. 13L lift off

Today, December 21, the Proton-M space rocket with a spacecraft was launched from the Baikonur cosmodrome in the interests of the Russian Ministry of Defense.

All prelaunch operations, launch and flight of the Proton-M launch vehicle were carried out in the normal mode. The successful launch of the spacecraft into the target orbit was provided by the Briz-M upper stage.

The new satellite has been accepted for control by the ground-based means of the Air and Space Forces (VKS) of Russia.


Video above: Launch of the Proton-M launch vehicle with a Russian spacecraft for the Ministry of Defense. Video Credit: Roscosmos TV.

It was the 2nd in 2018 and the 418th launch in the history of the Proton launch vehicle, (including all its modifications).

The Proton carrier rocket and the Briz-M upper stage were developed and mass-produced by the Center named after M. V. Khrunichev. The Proton-M PH is an upgraded version of the heavy-duty Proton carrier rocket with improved operational and environmental performance. Thanks to the use of the Briz-M upper stage, the Proton-M rocket is capable of delivering a payload of more than 6 tons to a geotransition orbit. The first launch of the Proton-M booster with the upper stage Breeze-M took place on April 7, 2001 of the year. Since then, this modification of the Proton rocket has been used in the 104th space launches.

Blagovest No. 13L satellite

The Blagovest No. 13L communications satellite to cover Russian territory and provide high-speed Internet, television and radio broadcast, and voice and video conferencing services for Russian domestic and military users.

Roscosmos Press Release: https://www.roscosmos.ru/25882/

Images, Video (mentioned), Text, Credits: ROSCOSMOS/Günter Space Page/Orbiter.ch Aerospace/Roland Berga.

Greetings, Orbiter.ch

Space Station Science Highlights: Week of December 17, 2018














ISS - Expedition 57 Mission patch / ISS - Expedition 58 Mission patch.

Dec. 21, 2018

After contributing to hundreds of experiments in biology, biotechnology, physical science and Earth science aboard the world-class orbiting laboratory, three members of the International Space Station’s Expedition 57 crew, including NASA astronaut Serena Auñón-Chancellor, returned to Earth Thursday, safely landing at 12:02 a.m. EST (11:02 a.m. local time) in Kazakhstan.


Image above: Expedition 57 crew members Alexander Gerst of ESA, Sergey Prokopyev of Roscosmos, and Serena Auñón-Chancellor of NASA sit inchairs outside the Soyuz MS-09 spacecraft after landing in a remote area near the town of Zhezkazgan, Kazakhstan. Image Credit: NASA.

The Expedition 57 crew Highlights included investigations into new cancer treatment methods and algae growth in space. The crew also installed a new Life Sciences Glovebox, a sealed work area for life science and technology investigations that can accommodate two astronauts.

Here’s a look at some of the science conducted this week aboard the orbiting lab:

Investigation studies dexterity in space

Microgravity provides a unique environment to study dexterous manipulation. The European Space Agency’s GRIP investigation studies long-duration spaceflight effects on the abilities of human subjects to regulate grip force and upper limb trajectories when manipulating objects using different kinds of movements (e.g. oscillatory movements, rapid discrete movements and tapping gestures), while restrained in the seated or supine position. This week, the crew performed the GRIP science tasks restrained to a chair in the supine, or lying facing upward, position.

Data collected from this investigation may provide insight into potential hazards for astronauts as they manipulate objects in different gravitational environments. It could also support design and control of haptic interfaces to be used in challenging environments, and provide information about motor control that potentially will be useful for the evaluation and rehabilitation of patients with neurological diseases on Earth.

Crew provides blood and saliva for immune study

Protecting crew health is important as NASA prepares for long duration, deep-space missions. Functional Immune studies previously uninvestigated areas of the body’s immune response, and if spaceflight alters a crew member’s susceptibility to disease.


Image above: ESA astronaut Alexander Gerst completes a blood collection with the help of NASA astronaut Serena Auñón-Chancellor. Image Credit: NASA.

The immune system is a complex weaving of biological structures and processes. Decreased activity in just one piece can cause changes in disease risk within the human body. Studies have shown that microgravity modifies the immune system. This may create an environment where rashes, unusual allergies and latent virus reactivation may present themselves in some crew members.

This week as a part of Functional Immune, the crew provided blood and saliva samples to be used to determine the changes taking place in crewmembers’ immune systems during flight.

Airway Monitoring

With dust particles present in the space station atmosphere, Airway Monitoring studies the occurrence and indicators of airway inflammation in crewmembers, using ultra-sensitive gas analyzers to evaluate exhaled air. This helps to highlight any health impacts and to maintain crewmember well-being on future human spaceflight missions. This is especially important on longer-duration missions – for example, to the Moon and Mars - where crewmembers will have to be more self-sufficient in identifying and avoiding such conditions. This kind of research may also benefit similar conditions, such as asthma, on Earth.

This week, the crew completed Low nitric oxide (NO) and High NO measurements for the ambient pressure session in the Destiny Laboratory.


Image above: David Saint-Jacques, of the Canadian Space Agency, completes the Bone Densitometer calibration in support of the Rodent Research-8 investigation. Image Credit: NASA.

Other work was performed on these investigations:

- The Spaceflight-induced Hypoxic/ROS Signaling (APEX-05) experiment grows different wild and mutant varieties of Arabidopsis thaliana, in order to understand how their genetic and molecular stress response systems work in space: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=1775

- CASIS PCG 16 evaluates growth of LRRK2 protein crystals in microgravity. LRRK2 is implicated in Parkinson’s disease, but crystals of the protein grown on Earth are too small and compact to study: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=7855

- Rodent Research-8 (RR-8) examines the physiology of aging and the effect of age on disease progression using groups of young and old mice flown in space and kept on Earth: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=7713

- The Bone Densitometer uses X-rays to measure the bone mineral density (and the lean and fat tissue) of mice living aboard the station. As a result, researchers hope to develop medical technology that will combat bone density loss in space and on Earth, helping millions of senior citizens who suffer from osteoporosis: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Facility.html?#id=1059

- Hydrogels are often used for tissue regeneration purposes due to their high water content and how easily they can be customized.  Hydrogel Formation and Drug Release in Microgravity Conditions takes advantage of reduced fluid motion in microgravity to more precisely study behavior of the gel and its potential as a wound-healing patch: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=7749

Space to Ground: Holiday Homecoming: 12/21/2018

Related links:

Expedition 57: https://www.nasa.gov/mission_pages/station/expeditions/expedition57/index.html

Expedition 58: https://www.nasa.gov/mission_pages/station/expeditions/expedition58/index.html

New cancer treatment methods: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=7502

Algae growth in space: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=7446

Life Sciences Glovebox: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Facility.html?#id=7676

GRIP: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=1188

Functional Immune: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=2011

Airway Monitoring: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=1067

Spot the Station: https://spotthestation.nasa.gov/

Space Station Research and Technology: https://www.nasa.gov/mission_pages/station/research/index.html

International Space Station (ISS): https://www.nasa.gov/mission_pages/station/main/index.html

Images (mentioned), Video (NASA), Text, Credits: NASA/Michael Johnson/Vic Cooley, Lead Increment Scientist Expeditions 57/58.

Best regards, Orbiter.ch

Lucy Finds Its Place in the Solar System: Navigating NASA’s First Mission to the Trojan Asteroids











NASA - LUCY Mission patch.

Dec. 21, 2018

In science fiction, explorers can hop in futuristic spaceships and traverse half the galaxy in the blink of a plot hole. However, this sidelines the navigational acrobatics required in order to guarantee real-life mission success.

In 2021, the feat of navigation that is the Lucy mission will launch. To steer Lucy towards its targets doesn’t simply involve programming a map into a spacecraft and giving it gas money – it will fly by six asteroid targets, each in different orbits, over the course of 12 years.


Image above: This diagram illustrates Lucy's orbital path. The spacecraft’s path (green) is shown in a frame of reference where Jupiter remains stationary, giving the trajectory its pretzel-like shape. After launch in October 2021, Lucy has two close Earth flybys before encountering its Trojan targets. In the L4 cloud Lucy will fly by (3548) Eurybates (white), (15094) Polymele (pink), (11351) Leucus (red), and (21900) Orus (red) from 2027-2028. After diving past Earth again Lucy will visit the L5 cloud and encounter the (617) Patroclus-Menoetius binary (pink) in 2033. As a bonus, in 2025 on the way to the L4, Lucy flies by a small Main Belt asteroid, (52246) Donaldjohanson (white), named for the discoverer of the Lucy fossil. After flying by the Patroclus-Menoetius binary in 2033, Lucy will continue cycling between the two Trojan clouds every six years. Image Credits: Southwest Research Institute.

Lucy’s destination is among Jupiter’s Trojan asteroids, clusters of rocky bodies almost as old as the Sun itself, and visiting these asteroids may help unlock the secrets of the early solar system. Lucy will encounter a Main Belt asteroid in 2025, where it will conduct a practice run of its instruments before encountering the first four Trojan targets from 2027-2028. In 2033, Lucy will end its mission with a study of a binary system of two Trojans orbiting each other.

Getting the spacecraft where it needs to go is a massive challenge. The solar system is in constant motion, and gravitational forces will pull on Lucy at all times, especially from the targets it aims to visit. Previous missions have flown by and even orbited multiple targets, but none so many as will Lucy.

Scientists and engineers involved with trajectory design have the responsibility of figuring out that route, under Flight Dynamics Team Leader Kevin Berry of NASA’s Goddard Space Flight Center in Greenbelt, Maryland. One such engineer is Jacob Englander, the optimization technical lead for the Lucy mission. “There are two ways to navigate a mission like Lucy,” he said. “You can either burn an enormous amount of propellant and zig-zag your way around trying to find more targets, or you can look for an opportunity where they just all happen to line up perfectly.” To visit these aligned targets, the majority of Lucy’s high-speed lane changes will come from gravity assists, with minimal use of fueled tweaks.

Though Lucy is programmed to throw itself out into a celestial alignment that will not occur for decades, it cannot be left to its own devices. Once the spacecraft begins to approach its asteroid targets, optical navigation is the next required step.

“OpNav,” as optical navigation technical lead Coralie Adam refers to it, is the usage of imagery from the on-board cameras to determine Lucy’s position relative to the target. This is a useful measurement used by the navigation team to tweak Lucy’s route and ensure it stays on the nominal flyby path. Adam works in Simi Valley, California, with KinetX, the company NASA selected to conduct Lucy’s deep space navigation.


Image above: Lucy will explore six Jupiter Trojan asteroids. These asteroids are trapped by Jupiter's gravity in two swarms that share the planet's orbit, one leading and one trailing Jupiter in its 12-year circuit around the sun. The Trojans are thought to be relics of a much earlier era in the history of the solar system, and may have formed far beyond Jupiter's current orbit. Image Credit: NASA.

By using the communications link from the spacecraft to Earth, Adam said, the Lucy team gets information about the spacecraft’s location, direction and velocity. The spacecraft takes pictures and sends them down to Earth, where Adam and other optical navigators use software to determine where the picture was taken based on the location of stars and the target. The orbit determination team uses this data along with data from the communications link to solve for where the spacecraft is and where it is expected to be, relative to the Trojans. The team then designs a trajectory correction maneuver to get Lucy on track. “The first maneuver is tiny,” said navigation technical lead Dale Stanbridge, who is also of KinetX. “But the second one is at 898 meters per second. That’s a characteristic of Lucy: very large delta V maneuvers.” Delta V refers to the change in speed during the maneuver.

Communicating all of these navigation commands with Lucy is a process all on its own. “Lockheed Martin sends the commands to the spacecraft via the Deep Space Network,” Adam said. “What we do is we work with Lockheed and the Southwest Research Institute, where teams are sequencing the instruments and designing how the spacecraft is pointed, to make sure Lucy takes the pictures we want when we want them.”

“The maneuvers to correct Lucy’s trajectory are all going to be really critical because the spacecraft must encounter the Trojan at the intersection of the spacecraft and Trojan orbital planes,” Stanbridge said. “Changing the spacecraft orbital plane requires a lot of energy, so the maneuvers need to be executed at the optimal time to reach to next body while minimizing the fuel cost.”

While Lucy is conducting deep space maneuvers to correct its trajectory toward its targets, communications with the spacecraft are sometimes lost for brief periods. “Blackout periods can be up to 30 minutes for some of our bigger maneuvers,” Stanbridge said. “Other times you could lose communications would be when, for example, the Sun, comes between the Earth tracking station and the spacecraft, where the signal would be degraded by passing through the solar plasma.”

Losing contact isn’t disastrous, though. “We have high-fidelity predictions of the spacecraft trajectory which are easily good enough to resume tracking the spacecraft when the event causing a communication loss is over,” Stanbridge said.

What route will Lucy take once its mission is complete, nearly 15 years from now? “We’re just going to leave it out there,” Englander said. “We did an analysis to see if it passively hits anything, and looking far into the future, it doesn’t.” The Lucy team has given the spacecraft a clear path for thousands of years, long after Lucy has rewritten the textbooks on our solar system’s history.

The Lucy mission is led by Principal Investigator Dr. Hal Levison from Southwest Research Institute in Boulder, Colorado. NASA Goddard in Greenbelt, Maryland, manages the mission. Lockheed Martin Space in Denver will build the spacecraft and conduct mission operations.

For more information about NASA's Lucy mission, visit:

http://www.nasa.gov/lucy

http://lucy.swri.edu/

Images (mentioned), Text, Credits: NASA/Bill Steigerwald/Goddard Space Flight Center, by Tamsyn Brann.

Greetings, Orbiter.ch

Holiday Asteroid Imaged with NASA Radar











Asteroid Watch logo.

December 21, 2018


Image above: These three radar images of near-Earth asteroid 2003 SD220 were obtained on Dec. 15-17, by coordinating observations with NASA's 230-foot (70-meter) antenna at the Goldstone Deep Space Communications Complex in California and the National Science Foundation's (NSF) 330-foot (100-meter) Green Bank Telescope in West Virginia. Image Credits: NASA/JPL-Caltech/GSSR/NSF/GBO.

The December 2018 close approach by the large, near-Earth asteroid 2003 SD220 has provided astronomers an outstanding opportunity to obtain detailed radar images of the surface and shape of the object and to improve the understanding of its orbit.

The asteroid will fly safely past Earth on Saturday, Dec. 22, at a distance of about 1.8 million miles (2.9 million kilometers). This will be the asteroid's closest approach in more than 400 years and the closest until 2070, when the asteroid will safely approach Earth slightly closer.

The radar images reveal an asteroid with a length of at least one mile (1.6 kilometers) and a shape similar to that of the exposed portion of a hippopotamus wading in a river. They were obtained Dec. 15-17 by coordinating the observations with NASA's 230-foot (70-meter) antenna at the Goldstone Deep Space Communications Complex in California, the National Science Foundation's 330-foot (100-meter) Green Bank Telescope in West Virginia and the Arecibo Observatory's 1,000-foot (305-meter) antenna in Puerto Rico.

The Green Bank Telescope was the receiver for the powerful microwave signals transmitted by either Goldstone or the NASA-funded Arecibo planetary radar in what is known as a "bistatic radar configuration." Using one telescope to transmit and another to receive can yield considerably more detail than would one telescope, and it is an invaluable technique to obtain radar images of closely approaching, slowly rotating asteroids like this one.


Image above: These two radar images of near-Earth asteroid 2003 SD220 were obtained on Dec. 18 and 19 by coordinating observations with the Arecibo Observatory's 1,000-foot (305-meter) antenna in Puerto Rico and the National Science Foundation's (NSF) 330-foot (100-meter) Green Bank Telescope in West Virginia. The radar images reveal the asteroid is at least one mile (1.6 kilometers) long. Image Credits: NASA/Arecibo/USRA/UCF/GBO/NSF.

"The radar images achieve an unprecedented level of detail and are comparable to those obtained from a spacecraft flyby," said Lance Benner of the Jet Propulsion Laboratory in Pasadena, California, and the scientist leading the observations from Goldstone. "The most conspicuous surface feature is a prominent ridge that appears to wrap partway around the asteroid near one end. The ridge extends about 330 feet [100 meters] above the surrounding terrain. Numerous small bright spots are visible in the data and may be reflections from boulders. The images also show a cluster of dark, circular features near the right edge that may be craters."

The images confirm what was seen in earlier "light curve" measurements of sunlight reflected from the asteroid and from earlier radar images by Arecibo: 2003 SD220 has an extremely slow rotation period of roughly 12 days. It also has what seems to be a complex rotation somewhat analogous to a poorly thrown football. Known as "non-principal axis" rotation, it is uncommon among near-Earth asteroids, most of which spin about their shortest axis.


Image above: The Great Big Thing - National Radio Astronomy Observatory. Image Credit: National Radio Astronomy Observatory.

With resolutions as fine as 12 feet (3.7 meters) per pixel, the detail of these images is 20 times finer than that obtained during the asteroid's previous close approach to Earth three years ago, which was at a greater distance. The new radar data will provide important constraints on the density distribution of the asteroid's interior - information that is available on very few near-Earth asteroids.

"This year, with our knowledge about 2003 SD220's slow rotation, we were able to plan out a great sequence of radar images using the largest single-dish radio telescopes in the nation," said Patrick Taylor, senior scientist with Universities Space Research Association (USRA) at the Lunar and Planetary Institute (LPI) in Houston.

"The new details we've uncovered, all the way down to 2003 SD220's geology, will let us reconstruct its shape and rotation state, as was done with Bennu, target of the OSIRIS-REx mission," said Edgard Rivera-Valentín, USRA scientist at LPI. "Detailed shape reconstruction lets us better understand how these small bodies formed and evolved over time."

Patrick Taylor led the bistatic radar observations with Green Bank Observatory, home of the Green Bank Telescope, the world's largest fully steerable radio telescope. Rivera-Valentín will be leading the shape reconstruction of 2003 SD220 and led the Arecibo Observatory observations.

Arecibo Observatory. Image Credit: Wikipedia

Asteroid 2003 SD220 was discovered on Sept. 29, 2003, by astronomers at the Lowell Observatory Near-Earth-Object Search (LONEOS) in Flagstaff, Arizona - an early Near-Earth Object (NEO) survey project supported by NASA that is no longer in operation. It is classified as being a "potentially hazardous asteroid" because of its size and close approaches to Earth's orbit. However, these radar measurements further refine the understanding of 2003 SD220's orbit, confirming that it does not pose a future impact threat to Earth.

The Arecibo, Goldstone and USRA planetary radar projects are funded through NASA's Near-Earth Object Observations Program within the Planetary Defense Coordination Office(PDCO), which manages the Agency's Planetary Defense Program. The Arecibo Observatory is a facility of the National Science Foundation operated under cooperative agreement by the University of Central Florida, Yang Enterprises and Universidad Metropolitana. GBO is a facility of the National Science Foundation, operated under a cooperative agreement by Associated Universities, Inc.

JPL hosts the Center for Near-Earth Object Studies (CNEOS) for NASA's Near-Earth Object Observations Program.

More information about CNEOS, asteroids and near-Earth objects can be found at:

https://cneos.jpl.nasa.gov

https://www.jpl.nasa.gov/asteroidwatch

For more information about NASA's Planetary Defense Coordination Office, visit:

https://www.nasa.gov/planetarydefense

More information about the National Science Foundation's Arecibo Observatory can be found at:

http://www.naic.edu/ao/

Planetary Defense Coordination Office (PDCO): https://www.nasa.gov/planetarydefense/overview

Images (mentioned), Text, Credits: NASA/Dwayne Brown/JoAnna Wendel/JPL/DC Agle/National Radio Astronomy Observatory/Charles Blue/Arecibo Observatory/Ricardo Correa.

Greetings, Orbiter.ch

ESA’s e.Deorbit debris removal mission reborn as servicing vehicle













ESA - Clean Space logo.

21 December 2018

ESA’s proposed e.Deorbit mission to take down a derelict satellite is being reborn in a wider role, as a new space servicing vehicle to perform a variety of different roles in orbit, including the refuelling, refurbishing or reboosting of satellites already in orbit.

ESA’s Clean Space initiative began developing the mission in 2013, organised around the deceptively simple task of capturing and safely deorbiting a derelict ESA-owned satellite in highly trafficked low-Earth orbit. The target was the Envisat Earth-observing satellite, which after 10 years of monitoring our homeworld, had failed unexpectedly the previous year.

Infrared and visible imaging of model satellite

Space Shuttle astronauts had captured errant satellites during the 1980s, but there was no precedent for the autonomous robotic capture of such an uncooperative target.

Work began on identifying the novel technologies that would need to be developed, including the type of capture mechanism to be used – from robotic arms to nets or even a harpoon. Also required was precise enoughguidance navigation and control system to safely close in and secure such a large, unpredictably tumbling target.

This took place as part of initial ‘Phase A’ studies by two parallel companies, followed up by detailed ‘Phase B1’ studies to shape its preliminary design, ready for follow-up implementation.

Concurrent Design Facility

Along with the innovative technologies under discussion, these Phase B1 activities made a little bit of ESA history in their own right, as the first such studies to be based around model-based system engineering – employing detailed software models of the satellite as the baseline engineering tool, rather than traditional written documentation.

Following these studies the decision has been made to widen the scope of the mission. It took so many advanced technologies to make such an act of active debris removal possible that the possibility is there to apply it to a recurrent space servicing cehicle design.

Of increasing industrial interest in recent years, this would be a ‘Swiss Army knife’ of a satellite with the agility, capability and autonomy to perform all kinds of complex tasks in space, such as refuelling high-value satellites reaching the end of their lives, adding new equipment to them, or attaching to them to move them to new orbits.

Robotic arm

Active debris removal is seen as particularly valuable for the imminent age of megaconstellations, when hundreds or even thousands of satellites will be formation flying in low orbits to offer low-latency telecommunications or global high-repeat Earth observation coverage.

Any failing satellite that breaks ranks might threaten the entire constellation around it, so dedicated space servicing vehicles especially tailored for the role could well play an essential ‘sheepdog’ role within megaconstellations.

Targeting satellite

In addition, a more general-purpose Space Servicing Vehicle could potentially be contracted to take down derelict satellites as one of its roles – a return to the original thinking behind e.Deorbit. Back in 2012, the initial approach taken was to invite companies to take down Envisat on a service-oriented basis, but it was seen as too risky a challenge.

“Today we have the funding to develop relevant technologies but not to actually remove a defunct satellite,” explains Luisa Innocenti, heading Clean Space. “Instead, we have asked industry to make proposals to remove a defunct ESA object while demonstrating in-orbit servicing – the new path to a potentially very valuable business.”

Clean Space: http://www.esa.int/Our_Activities/Space_Engineering_Technology/Clean_Space

Images, Text, Credits: ESA/G. Porter/David Ducros/CC BY-SA 3.0 IGO/Airbus Defence and Space.

Greetings, Orbiter.ch

International Crew to Ring in Christmas 50 Years After First Moon Trip













ISS - Expedition 58 Mission patch.

December 21, 2018

Three people from the U.S., Canada and Russia are orbiting Earth today getting ready to observe Christmas and experience New Year’s Eve from space aboard the International Space Station. Back on Earth, another three station crew members have returned to their home bases just 24 hours after completing a 197-day mission aboard the orbital lab.


Image above: The official Expedition crew portrait with (from left) NASA astronaut Anne McClain, Roscosmos cosmonaut Oleg Kononenko and astronaut David Saint-Jacques of the Canadian Space Agency. Image Credit: NASA.

The first time three humans spent Christmas in space was 50 years ago in 1968 during Apollo 8 and was also the first time a crew orbited the Moon. This Christmas astronauts Anne McClain of NASA and David Saint-Jacques of the Canadian Space Agency with cosmonaut Oleg Kononenko of Roscosmos will be soaring about 250 miles above the Earth’s surface in a much larger spacecraft. The Expedition 58 trio will share a traditional meal aboard the orbital lab, share gifts and call down to family during their off-duty day.

Kononenko is beginning his fourth mission on the station and will spend his second Christmas in space. McClain and Saint-Jacques are getting used to life in space for the first time and will return to Earth in June with Kononenko.

International Space Station (ISS). Image Credit: NASA

NASA astronaut Serena Auñón-Chancellor returned to Houston late Thursday just one day after landing in Kazakhstan wrapping up her six-and-a-half month stay aboard the orbital lab. She parachuted to Earth inside the Soyuz MS-09 spacecraft with her Expedition 57 crewmates Alexander Gerst of ESA (European Space Agency) and Sergey Prokopyev of Roscosmos.

Related article:

A Bold Step: Apollo 8 Sends First Human Flight Beyond Earth
https://orbiterchspacenews.blogspot.com/2018/12/a-bold-step-apollo-8-sends-first-human.html

Related links:

Expedition 57: https://www.nasa.gov/mission_pages/station/expeditions/expedition57/index.html

Expedition 58: https://www.nasa.gov/mission_pages/station/expeditions/expedition58/index.html

Apollo 8: https://www.nasa.gov/mission_pages/apollo/apollo-8.html

Space Station Research and Technology: https://www.nasa.gov/mission_pages/station/research/index.html

International Space Station (ISS): https://www.nasa.gov/mission_pages/station/main/index.html

Images (mentioned), Text, Credits:NASA/Mark Garcia.

Best regards, Orbiter.ch

Hubble’s Cosmic Holiday Wreath












NASA - Hubble Space Telescope patch.

Dec. 21, 2018


This festive NASA Hubble Space Telescope image resembles a holiday wreath made of sparkling lights. The bright southern hemisphere star RS Puppis, at the center of the image, is swaddled in a gossamer cocoon of reflective dust illuminated by the glittering star. The super star is ten times more massive than the Sun and 200 times larger.

RS Puppis rhythmically brightens and dims over a six-week cycle. It is one of the most luminous in the class of so-called Cepheid variable stars. Its average intrinsic brightness is 15,000 times greater than the Sun's luminosity.

The nebula flickers in brightness as pulses of light from the Cepheid propagate outwards. Hubble took a series of photos of light flashes rippling across the nebula in a phenomenon known as a "light echo." Even though light travels through space fast enough to span the gap between Earth and the Moon in a little over a second, the nebula is so large that reflected light can actually be photographed traversing the nebula.

By observing the fluctuation of light in RS Puppis itself, as well as recording the faint reflections of light pulses moving across the nebula, astronomers are able to measure these light echoes and pin down a very accurate distance. The distance to RS Puppis has been narrowed down to 6,500 light-years (with a margin of error of only one percent).

Hubble Space Telescope (HST)

For more information about Hubble, visit:

http://hubblesite.org/

http://www.nasa.gov/hubble

http://www.spacetelescope.org/

Image, Animation, Credits: NASA, ESA and the Hubble Heritage Team (STScI/AURA) – Hubble/Europe Collaboration; Acknowledgement: H. Bond (STScI and Pennsylvania State University)/Text Credits: Space Telescope Science Institute (STScI)/NASA/Karl Hille.

Season's Greetings, Orbiter.ch