mercredi 27 janvier 2021

NASA’s Perseverance Rover 22 Days From Mars Landing

 







NASA - Mars 2020 Perseverance Rover logo.


Jan. 27, 2021

Seven minutes of harrowing descent to the Red Planet is in the not-so-distant future for the agency’s Mars 2020 mission.


Image above: This illustration shows the events that occur in the final minutes of the nearly seven-month journey that NASA’s Perseverance rover takes to Mars. Hundreds of critical events must execute perfectly and exactly on time for the rover to land on Mars safely on Feb. 18, 2021. Image Credits: NASA/JPL-Caltech.

NASA’s Mars 2020 Perseverance rover mission is just 22 days from landing on the surface of Mars. The spacecraft has about 25.6 million miles (41.2 million kilometers) remaining in its 292.5-million-mile (470.8-million-kilometer) journey and is currently closing that distance at 1.6 miles per second (2.5 kilometers per second). Once at the top of the Red Planet’s atmosphere, an action-packed seven minutes of descent awaits – complete with temperatures equivalent to the surface of the Sun, a supersonic parachute inflation, and the first ever autonomous guided landing on Mars.

Perseverance Arrives at Mars: Feb. 18, 2021 (Mission Trailer)

Only then can the rover – the biggest, heaviest, cleanest, and most sophisticated six-wheeled robotic geologist ever launched into space – search Jezero Crater for signs of ancient life and collect samples that will eventually be returned to Earth.

“NASA has been exploring Mars since Mariner 4 performed a flyby in July of 1965, with two more flybys, seven successful orbiters, and eight landers since then,” said Thomas Zurbuchen, associate administrator for NASA’s Science Mission Directorate at the agency’s headquarters in Washington. “Perseverance, which was built from the collective knowledge gleaned from such trailblazers, has the opportunity to not only expand our knowledge of the Red Planet, but to investigate one of the most important and exciting questions of humanity about the origin of life both on Earth and also on other planets.”

Jezero Crater is the perfect place to search for signs of ancient microbial life. Billions of years ago, the now-bone-dry 28-mile-wide (45-kilometer-wide) basin was home to an actively-forming river delta and lake filled with water. The rock and regolith (broken rock and dust) that Perseverance’s Sample Caching System collects from Jezero could help answer fundamental questions about the existence of life beyond Earth. Two future missions currently in the planning stages by NASA, in collaboration with ESA (European Space Agency), will work together to bring the samples back to Earth, where they will undergo in-depth analysis by scientists around the world using equipment far too large and complex to send to the Red Planet.

“Perseverance’s sophisticated science instruments will not only help in the hunt for fossilized microbial life, but also expand our knowledge of Martian geology and its past, present, and future,” said Ken Farley, project scientist for Mars 2020, from Caltech in Pasadena, California. “Our science team has been busy planning how best to work with what we anticipate will be a firehose of cutting-edge data. That’s the kind of ‘problem’ we are looking forward to.”

Image Credits: NASA/JPL-Caltech


Testing Future Tech

While most of Perseverance’s seven science instruments are geared toward learning more about the planet’s geology and astrobiology, the mission also carries technologies more focused on future Mars exploration. MOXIE (Mars Oxygen In-Situ Resource Utilization Experiment), a car-battery-size device in the rover’s chassis, is designed to demonstrate that converting Martian carbon dioxide into oxygen is possible. Future applications of the technology could produce the vast quantities of oxygen that would be needed as a component of the rocket fuel astronauts would rely on to return to Earth, and, of course, the oxygen could be used for breathing as well.

The Terrain-Relative Navigation system helps the rover avoid hazards. MEDLI2 (the Mars Entry, Descent, and Landing Instrumentation 2) sensor suite gathers data during the journey through the Martian atmosphere. Together the systems will help engineers design future human missions that can land more safely and with larger payloads on other worlds.

Another technology demonstration, the Ingenuity Mars Helicopter, is attached to the belly of the rover. Between 30 and 90 days into the rover’s mission, Ingenuity will be deployed to attempt the first experimental flight test on another planet. If that initial flight is successful, Ingenuity will fly up to four more times. The data acquired during these tests will help the next generation of Mars helicopters provide an aerial dimension to Mars exploration.

Getting Ready for the Red Planet

Like people around the world, members of the Mars 2020 team have had to make significant modifications to their approach to work during the COVID-19 pandemic. While a majority of the team members have performed their jobs via telework, some tasks have required an in-person presence at NASA’s Jet Propulsion Laboratory, which built the rover for the agency and is managing the mission. Such was the case last week when the team that will be on-console at JPL during landing went through a three-day-long COVID-adapted full-up simulation of the upcoming Feb. 18 Mars landing.

“Don’t let anybody tell you different – landing on Mars is hard to do,” said John McNamee, project manager for the Mars 2020 Perseverance rover mission at JPL. “But the women and men on this team are the best in the world at what they do. When our spacecraft hits the top of the Mars atmosphere at about three-and-a-half miles per second, we’ll be ready.”

Less than a month of dark, unforgiving interplanetary space remains before the landing. NASA Television and the agency’s website will carry live coverage of the event from JPL beginning at 11:15 a.m. PST (2:15 p.m. EST).


Image above: Composed of multiple precisely aligned images from the Context Camera on the Mars Reconnaissance Orbiter, this annotated mosaic depicts a possible route the Mars 2020 Perseverance rover could take across Jezero Crater as it investigates several ancient environments that may have once been habitable. Image Credits: NASA/JPL-Caltech.

More About the Mission

A key objective of Perseverance's mission on Mars is astrobiology, including the search for signs of ancient microbial life. The rover will characterize the planet's geology and past climate, pave the way for human exploration of the Red Planet, and be the first mission to collect and cache Martian rock and regolith.

Subsequent missions, currently under consideration by NASA in cooperation with ESA (European Space Agency), would send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.

The Mars 2020 mission is part of a larger program that includes missions to the Moon as a way to prepare for human exploration of the Red Planet. Charged with returning astronauts to the Moon by 2024, NASA will establish a sustained human presence on and around the Moon by 2028 through NASA's Artemis lunar exploration plans.

JPL, which is managed for NASA by Caltech in Pasadena, California, built and manages operations of the Perseverance rover.

For more about Perseverance:

https://mars.nasa.gov/mars2020/

https://nasa.gov/perseverance

For more information about NASA's Mars missions, go to: https://www.nasa.gov/mars

Related links:

NASA Television: https://www.nasa.gov/multimedia/nasatv/#public

Ingenuity Mars Helicopter: https://www.nasa.gov/feature/jpl/6-things-to-know-about-nasas-ingenuity-mars-helicopter/

Images (mentioned), Video, Text, Credits: NASA/Tony Greicius/Grey Hautaluoma/Alana Johnson/JPL/DC Agle.

Greetings, Orbiter.ch

BASE opens up new possibilities in the search for cold dark matter

 







CERN - European Organization for Nuclear Research logo.


Jan. 27, 2021

The Baryon Antibaryon Symmetry Experiment (BASE) at CERN’s Antimatter Factory has set new limits on how easily axion-like particles could turn into photons


Image above: Jack Devlin, physicist, adjusts the sensitivity of the antiproton beam monitor of the BASE experiment. (Image: CERN).

The Baryon Antibaryon Symmetry Experiment (BASE) at CERN’s Antimatter Factory has set new limits on the existence of axion-like particles, and how easily those in a narrow mass range around 2.97 neV could turn into photons, the particles of light. BASE’s new result, published by Physical Review Letters, describes this pioneering method and opens up new experimental possibilities in the search for cold dark matter.

Axions, or axion-like particles, are candidates for cold dark matter. From astrophysical observations, we believe that around 27% of the matter-energy content of the universe is made up of dark matter. These unknown particles feel the force of gravity, but they barely respond to the other fundamental forces, if they experience them at all. The best accepted theory of fundamental forces and particles, called the Standard Model of particle physics, does not contain any particles that have the right properties to be cold dark matter. The result reported by BASE investigates this hypothetical dark-matter background present throughout the universe.

Since the Standard Model leaves many questions unanswered, physicists have proposed theories that go beyond it, some of which explain the nature of dark matter. Among such theories are those that suggest the existence of axions or axion-like particles. These theories need to be tested, and many experiments have been set up around the world to look for these particles, including at CERN. For the first time, BASE has turned the tools developed to detect single antiprotons, the antimatter equivalent of a proton, to the search for dark matter. This is especially significant as BASE was not designed for such studies.

“BASE has extremely sensitive detection systems to study the properties of single trapped antiprotons. These detectors can also be used to search for signals of particles other than those produced by antiprotons in traps. In this work, we used one of our detectors as an antenna to search for a new type of axion-like particles,” says Jack Devlin, a CERN research fellow working on the experiment.

Compared to the large detectors installed in the Large Hadron Collider, BASE is a small experiment. It is connected to CERN’s Antiproton Decelerator, which supplies it with antiprotons. BASE captures and suspends these particles in a Penning trap, a device that combines electric and strong magnetic fields. To avoid collisions with ordinary matter, the trap is operated at 5 kelvins (around -268 degrees Celsius), a temperature at which exceedingly low pressures, similar to those in deep space, are reached. In this extremely well-isolated environment, clouds of trapped antiprotons can exist for years at a time. By carefully adjusting the electric fields, the physicists at BASE can isolate individual antiprotons and move them to a separate part of the experiment. In this region, very sensitive superconducting resonant detectors can pick up the tiny electrical currents generated by single antiprotons as they move around the trap.

In the work published by Physical Review Letters, the BASE team looked for unexpected electrical signals in their sensitive antiproton detectors. At the heart of each detector is a small, approximately 4 cm in diameter, donut-shaped coil of superconducting wire, which looks similar to the inductors you often find in ordinary electronics. However, the BASE detectors are superconducting and have almost no electrical resistance, and all the surrounding components are carefully chosen so that they do not cause electrical losses. This makes the BASE detectors extremely sensitive to small electric fields. The detectors are located in the Penning trap's strong magnetic field; axions from the dark-matter background would interact with this magnetic field and turn into photons, which can then be detected.


Image above: A one page summary of the axion-like particle detection system. The graph on the top right shows a simulated axion-like particle signal (sharp peak) on the broader detector resonance. The graph on the left shows the calibration of the detector using a trapped antiproton. Image Credit: CERN.

Physicists used the antiproton as a quantum sensor to calibrate the background noise on their detector. They then began to search for narrow frequency signatures inconsistent with detector noise, however faint, which could hint at those induced by axion-like particles and their possible interactions with photons. Nothing was found at the frequencies that were recorded, which means that BASE succeeded in setting new upper limits for the possible interactions between photons and axion-like particle with certain masses.

With this study, BASE opens up possibilities for other Penning trap experiments to participate in the search for dark matter. Since BASE was not built to look for these signals, several changes could be made to increase the sensitivity and bandwidth of the experiment and improve the probability of finding an axion-like particle in the future.

“With this new technique, we’ve combined two previously unrelated branches of experimental physics: axion physics and high-precision Penning trap physics. Our laboratory experiment is complementary to astrophysics experiments and especially sensitive in the low axion-mass range. With a purpose-built instrument we would be able to broaden the landscape of axion searches using Penning trap techniques,” says BASE spokesperson Stefan Ulmer.

Note:

CERN, the European Organization for Nuclear Research, is one of the world’s largest and most respected centres for scientific research. Its business is fundamental physics, finding out what the Universe is made of and how it works. At CERN, the world’s largest and most complex scientific instruments are used to study the basic constituents of matter — the fundamental particles. By studying what happens when these particles collide, physicists learn about the laws of Nature.

The instruments used at CERN are particle accelerators and detectors. Accelerators boost beams of particles to high energies before they are made to collide with each other or with stationary targets. Detectors observe and record the results of these collisions.

Founded in 1954, the CERN Laboratory sits astride the Franco–Swiss border near Geneva. It was one of Europe’s first joint ventures and now has 23 Member States.

Related links:

Physical Review Letters: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.126.041301

Baryon Antibaryon Symmetry Experiment (BASE): https://base.web.cern.ch/

Large Hadron Collider (LHC): https://home.cern/science/accelerators/large-hadron-collider

Antiproton Decelerator: https://home.cern/science/accelerators/antiproton-decelerator

Dark matter: https://home.cern/science/physics/dark-matter

For more information about European Organization for Nuclear Research (CERN), Visit: https://home.cern/

Images (mentioned), Video, Text, Credits: European Organization for Nuclear Research (CERN).

Best regards, Orbiter.ch

NASA and Boeing Target New Launch Date for Next Starliner Flight Test

 







Boeing & NASA - Starliner OFT-2 Mission patch.


Jan. 27, 2021

NASA and Boeing are targeting no earlier than Thursday, March 25, for the launch of Starliner’s second uncrewed flight test as part of the agency’s Commercial Crew Program. Boeing’s Orbital Flight Test-2, or OFT-2, is a critical developmental milestone on the company’s path to fly crew missions for NASA to the International Space Station.

The target launch date is enabled by an opening on the Eastern Range, the availability of the United Launch Alliance Atlas V rocket, steady progress on hardware and software, and an International Space Station docking opportunity.


Image above: Technicians observe Boeing’s Starliner crew module being placed on top of the service module in the Commercial Crew and Cargo Processing Facility at NASA’s Kennedy Space Center in Florida on Jan. 14, 2021. The Starliner spacecraft is being prepared for Boeing’s second Orbital Flight Test (OFT-2). As part of the agency’s Commercial Crew Program, OFT-2 is a critical developmental milestone on the company’s path to fly crew missions for NASA. Photo credit: Boeing/John Proferes.

Boeing recently mated the spacecraft’s reusable crew module on its brand new service module inside the Starliner production factory at Kennedy Space Center in Florida. Teams are working to complete outfitting of the vehicle’s interior before loading cargo and conducting final spacecraft checkouts.

Boeing also recently completed the formal requalification of Starliner’s OFT-2 flight software. Teams conducted a full software review and several series of tests to verify Starliner’s software meets design specifications. Boeing also will complete an end-to-end simulation of the OFT-2 test flight using flight hardware and final versions of Starliner’s flight software to model the vehicle’s expected behavior before flight.


Image above: Boeing CST-100 lines up with International Space Station’s International Docking Adapter 2 in this NASA illustration. Image Credit: NASA.

The OFT-2 mission will launch Starliner on a United Launch Alliance Atlas V rocket from Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida, dock to the space station and return to land in the western United States about a week later as part of an end-to-end test flight to prove the system is ready to fly crew.

Related links:

Boeing’s CST-100 Starliner: http://www.boeing.com/space/starliner/launch/index.html

Commercial Crew: https://www.nasa.gov/exploration/commercial/crew/index.html

International Space Station (ISS): https://www.nasa.gov/mission_pages/station/main/index.html

Images (mentioned), Text, Credits: NASA/Anna Heiney.

Greetings, Orbiter.ch

mardi 26 janvier 2021

Astronauts Ready for Wednesday Science Upgrades Spacewalk

 






ISS - Expedition 64 Mission patch.


Jan. 26, 2021

Two NASA astronauts are ready for the first spacewalk of the year on Wednesday with support from two of their fellow Expedition 64 Flight Engineers. The rest of the crew aboard the International Space Station kept up research and life support operations today.

Michael Hopkins and Victor Glover will exit the Quest airlock after setting their spacesuits to battery power tomorrow about 7 a.m. EST. They will maneuver to the Columbus laboratory module and spend about six-and-a-half hours outfitting its Bartolomeo science platform with an antenna and cables. NASA TV will begin live coverage of all the spacewalk activities at 5:30 a.m.


Image above: NASA astronauts Victor Glover (left) and Michael Hopkins work on U.S. spacesuit maintenance inside the International Space Station’s Quest airlock. Image Credit: NASA.

The spacewalkers will be supported by Kate Rubins of NASA and Soichi Noguchi of JAXA throughout the duration of the excursion. Rubins will command the Canadarm2 robotic arm as Noguchi backs her up. They will also help Hopkins and Glover in and out of their spacesuits.

The quartet got together in the middle of the day for a final procedures review with specialists in Mission Control. Afterward, Hopkins and Glover staged their tools and safety tethers inside Quest where they take them into the vacuum of space.

Bartolomeo installed on Columbus module on ISS. Image Credit: ESA

The three other station residents rolled on with space science, cargo operations and life support maintenance.

NASA Flight Engineer Shannon Walker set up fluid physics hardware for an experiment seeking ways to improve spacecraft systems such as fuel tanks and propulsion. Roscosmos Commander Sergey Ryzhikov refueled the Progress 76 resupply ship ahead of its Feb. 9 departure.  Cosmonaut Sergey Kud-Sverchkov worked on a navigation computer and checked on Earth observation and radiation studies.

Related links:

NASA TV: https://www.nasa.gov/live

Expedition 64: https://www.nasa.gov/mission_pages/station/expeditions/expedition64/index.html

Quest airlock: https://www.nasa.gov/mission_pages/station/structure/elements/joint-quest-airlock

Columbus laboratory module: https://www.nasa.gov/mission_pages/station/structure/elements/europe-columbus-laboratory

Bartolomeo: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Facility.html?#id=7799

Canadarm2 robotic arm: https://www.nasa.gov/mission_pages/station/structure/elements/mobile-servicing-system.html

Fuel tanks and propulsion: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=8224

Earth observation: https://www.energia.ru/en/iss/researches/study/14.html

Radiation: https://www.energia.ru/en/iss/researches/human/03.html

Space Station Research and Technology: https://www.nasa.gov/mission_pages/station/research/overview.html

International Space Station (ISS): https://www.nasa.gov/mission_pages/station/main/index.html

Images (mentioned), Text, Credits: NASA/Mark Garcia.

Best regards, Orbiter.ch

NASA’s OSIRIS-REx Mission Plans for May Asteroid Departure

 






NASA - OSIRIS-REx Mission patch.


Jan. 26, 2021

On May 10, NASA’s Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx) spacecraft will say farewell to asteroid Bennu and begin its journey back to Earth. During its Oct. 20, 2020, sample collection event, the spacecraft collected a substantial amount of material from Bennu’s surface, likely exceeding the mission’s requirement of 2 ounces (60 grams). The spacecraft is scheduled to deliver the sample to Earth on Sep. 24, 2023.


Image above: This illustration shows the OSIRIS-REx spacecraft departing asteroid Bennu to begin its two-year journey back to Earth. Image Credits: NASA/Goddard/University of Arizona.

“Leaving Bennu’s vicinity in May puts us in the ‘sweet spot,’ when the departure maneuver will consume the least amount of the spacecraft’s onboard fuel,” said Michael Moreau, OSIRIS-REx deputy project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Nevertheless, with over 593 miles per hour (265 meters per second) of velocity change, this will be the largest propulsive maneuver conducted by OSIRIS-REx since the approach to Bennu in October 2018.”

The May departure also provides the OSIRIS-REx team with the opportunity to plan a final spacecraft flyby of Bennu. This activity was not part of the original mission schedule, but the team is studying the feasibility of a final observation run of the asteroid to potentially learn how the spacecraft’s contact with Bennu’s surface altered the sample site.

If feasible, the flyby will take place in early April and will observe the sample site, named Nightingale, from a distance of approximately 2 miles (3.2 kilometers). Bennu’s surface was considerably disturbed after the Touch-and-Go (TAG) sample collection event, with the collector head sinking 1.6 feet (48.8 centimeters) into the asteroid’s surface. The spacecraft’s thrusters also disturbed a substantial amount of surface material during the back-away burn.

The mission is planning a single flyby, mimicking one of the observation sequences conducted during the mission’s Detailed Survey phase in 2019. OSIRIS-REx would image Bennu for a full rotation to obtain high-resolution images of the asteroid’s northern and southern hemispheres and equatorial region. The team would then compare these new images with the previous high-resolution imagery of Bennu obtained during 2019.

"OSIRIS-REx has already provided incredible science,” said Lori Glaze, NASA's director of planetary science at the agency's headquarters in Washington. "We're really excited the mission is planning one more observation flyby of asteroid Bennu to provide new information about how the asteroid responded to TAG and to render a proper farewell.”

OSIRIS-REx spacecraft. Animation Credit: NASA

These post-TAG observations would also give the team a chance to assess the current functionality of science instruments onboard the spacecraft – specifically the OSIRIS-REx Camera Suite (OCAMS), OSIRIS-REx Thermal Emission Spectrometer (OTES), OSIRIS-REx Visible and Infrared Spectrometer (OVIRS), and OSIRIS-REx Laser Altimeter (OLA). It is possible dust coated the instruments during the sample collection event and the mission wants to evaluate the status of each. Understanding the health of the instruments is also part of the team’s assessment of possible extended mission opportunities after the sample is delivered to Earth.

The spacecraft will remain in asteroid Bennu’s vicinity until May 10, when the mission will enter its Earth Return Cruise phase. As it approaches Earth, OSIRIS-REx will jettison the Sample Return Capsule (SRC). The SRC will then travel through the Earth’s atmosphere and land under parachutes at the Utah Test and Training Range.

Once recovered, NASA will transport the capsule to the curation facility at the agency’s Johnson Space Center in Houston and distribute the sample to laboratories worldwide, enabling scientists to study the formation of our solar system and Earth as a habitable planet.

Goddard provides overall mission management, systems engineering, and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona in  Tucson is the principal investigator, and the University of Arizona also leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space in Littleton, Colorado, built the spacecraft and provides flight operations. Goddard and KinetX Aerospace are responsible for navigating the OSIRIS-REx spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program, which NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages for the agency’s Science Mission Directorate in Washington.

For more information on OSIRIS-REx, visit: https://www.nasa.gov/osiris-rex and https://www.asteroidmission.org

Image (mentioned), Animation (mentioned), Text, Credits: NASA/Sean Potter/Grey Hautaluoma/Alana Johnson/GSFC/Rani Gran.

Greetings, Orbiter.ch

Unique Solar System Views from NASA Sun-Studying Missions

 







NASA Goddard Space Flight Center logo.


Jan. 26, 2021

Though they focus on the star at the center of our solar system, three of NASA’s Sun-watching spacecraft have captured unique views of the planets throughout the last several months. Using instruments that look not at the Sun itself, but at the constant outflow of solar material from the Sun, the missions — ESA and NASA’s Solar Orbiter, NASA’s Parker Solar Probe, and NASA’s Solar and Terrestrial Relations Observatory — have sent home images from their distinct vantage points across the inner solar system.


Image above: This computer-generated view shows the perspective of the Solar Orbiter spacecraft on Nov. 18, 2020, illustrating why Solar Orbiter’s view shows — from left to right — Venus, Earth, and Mars, with Mercury and the Sun off camera to the right. Image Credit: ESA.

All three missions carry instruments to study the Sun and its influence on space, including cameras that look out the sides of the spacecraft to study the Sun’s outer atmosphere, the solar wind, and the dust in the inner solar system. It’s these instruments that, at various points in 2020, saw several planets pass through their fields of view.

Each of the three missions has a distinct orbit, so their perspectives are different from both ours here on Earth and from each other. This is reflected in each spacecraft’s view of the planets, which show the bodies in different positions than what would have been seen from Earth and from the other spacecraft on those dates.

Solar Orbiter


Animation above: ESA and NASA’s Solar Orbiter took these images of Venus, Earth, and Mars on Nov. 18, 2020. Animation Credits: ESA/NASA/NRL/Solar Orbiter/SolOHI.

Looking back towards home from about 155.7 million miles (250.6 million kilometers) away, the Solar Orbiter Heliospheric Imager, or SoloHI, aboard ESA and NASA’s Solar Orbiter spacecraft captured Venus, Earth, and Mars together on Nov. 18, 2020. The Sun is located on the right, outside the image frame.

Launched in February 2020, Solar Orbiter returned its first images in July 2020, including the closest-ever view of the Sun. SoloHI, one of ten instruments on the spacecraft and the only heliospheric imager, looks off to the side of the Sun to capture the solar wind and dust that fills the space between the planets.


Images above: NASA’s Parker Solar Probe saw almost all the solar system’s planets in a pair of images captured on June 7, 2020. labeled (above) and unlabeled (below) version of the image. Images Credits: NASA/Johns Hopkins APL/Naval Research Laboratory/Guillermo Stenborg and Brendan Gallagher.

As Parker Solar Probe wheeled around the Sun on June 7, 2020, its Wide-field Imager for Solar Probe instrument, or WISPR, snapped two image frames that captured six of our solar system’s planets: Mercury, Venus, Earth, Mars, Jupiter, and Saturn.

WISPR captures images of the solar corona and inner heliosphere in visible light, along with images of the solar wind and other structures as they approach and pass the spacecraft. The spacecraft was approximately 11.6 million miles (18.7 million kilometers) from the Sun, and about 98.3 million miles (158 million kilometers) from Earth, when WISPR gathered the images.

STEREO


Images above: NASA’s Solar and Terrestrial Relations Observatory saw most of the solar system’s planets in one image on June 7, 2020. labeled (above) and unlabeled (below) version of the image. Images Credits: NASA/STEREO/HI.

NASA’s Solar and Terrestrial Relations Observatory, or STEREO, captured this view of most of our solar system’s planets on June 7, 2020. Though this image was taken around the same time as Parker Solar Probe’s, STEREO’s position in the solar system gave it a different perspective on the planets. This image is from one of the Heliospheric Imagers on STEREO, which views the outer atmosphere of the Sun, the corona, and the solar wind, allowing scientists to study how solar material travels out into the solar system. The dark columns in the image are related to saturation on the instrument’s detector, caused by the brightness of the planets combined with the long exposure time.

Images above: (Left) This graphic illustrates Parker Solar Probe’s position and view of the solar system on June 7, 2020. The inset shows the spacecraft and its orientation, as well as the location of the WISPR instrument on the spacecraft and the fields of view of its inner and outer telescopes. The slightly brighter region between the two fields of view is the telescopes’ overlapping views. The green loops overlapping the inner planets mark Parker Solar Probe’s path around the Sun. (Right) This graphic illustrates the position of NASA’s Solar and Terrestrial Relations Observatory on June 7, 2020, when it saw most of the solar system’s planets in one image. Images Credits: NASA/Johns Hopkins APL/Yanping Guo; NASA/STEREO/HI.

Related links:

Parker Solar Probe: https://www.nasa.gov/solarprobe

Solar Orbiter: https://www.nasa.gov/solar-orbiter

STEREO (Solar TErrestrial RElations Observatory): http://www.nasa.gov/mission_pages/stereo/main/index.html

Goddard Space Flight Center (GSFC): https://www.nasa.gov/centers/goddard/home/index.html

Images (mentioned), Animation (mentioned), Text, Credits: NASA/GSFC/Sarah Frazier and Miles Hatfield/Johns Hopkins University Applied Physics Laboratory/Michael Buckley.

Best regards, Orbiter.ch

Finding a New Earth

 







NASA - Kepler Mission patch.


Jan. 26, 2021


Kepler-22b is the first planet discovered inside the habitable zone of a Sun-like star. This artist's conception from 2011, shows the first planet that NASA's Kepler mission has confirmed to orbit the region around a star where liquid water, a requirement for life on Earth, could exist. This exoplanet is 2.4 times the size of Earth, making it the smallest yet found to orbit in the middle of the habitable zone of a star like our Sun.

At the time scientists did not know if the planet has a predominantly rocky, gaseous or liquid composition. It's possible that the world would have clouds in its atmosphere, as depicted here in the artist's interpretation.

Kepler mission: https://www.nasa.gov/mission_pages/kepler/main/index.html

Image, Text,  Credits: NASA/Yvette Smith/Ames/JPL-Caltech.

Greetings, Orbiter.ch