mercredi 28 septembre 2016

NASA’s Van Allen Probes Spot Electron Rainfall in Atmosphere

NASA - Van Allen Probes Mission logo.

Sept. 28, 2016

Our planet is nestled in the center of two doughnut-shaped regions of powerful, dynamic radiation: the Van Allen belts, where high-energy particles are trapped by Earth’s magnetic field. Depending on incoming radiation from the sun, they can gain energetic particles. On the other hand, the belts can lose energized particles too.

NASA Explores High-Energy Rainfall in the Atmosphere

Video above: This video illustrates the complexity of Earth’s magnetic environment, from the radiation belts encircling Earth to the magnetic field lines, depicted as blue ribbons, extending far out into space. During a drop-out, ultra-relativistic electrons stream down along powerful electromagnetic waves, as if they are raining into the atmosphere. Video Credits: NASA Goddard/Joy Ng/Martin Rother/GFZ-Potsdam.

We are familiar with rapid changes in weather, and the radiation belts can experience these too – particles can be depleted by a thousand-fold in mere hours. These dramatic loss events are called drop-outs, and they can happen when intense bouts of solar radiation disturb Earth’s magnetic environment. There have been many theories on how this happens, but scientists have not had the data to pinpoint which one is correct.

Artist's view of Van Allen Probes in orbit. Image Credit: NASA

However, on Jan. 17, 2013, NASA's Van Allen Probes were in just the right position to watch a drop-out in progress and resolve a long-standing question as to how the lower region of the belts close to Earth loses high-energy electrons – known as ultra-relativistic electrons for their near-light speeds. During a drop-out, a certain class of powerful electromagnetic waves in the radiation belts can scatter ultra-relativistic electrons. The electrons stream down along these waves, as if they are raining into the atmosphere. A team led by Yuri Shprits of University of California in Los Angeles published a paper summarizing these findings in Nature Communications on Sept. 28, 2016:

Such information helps illustrate the complexity of Earth's magnetic surroundings.  Understanding changes within the belts is crucial for protecting the satellites and astronauts travelling through this sometimes harsh space environment.

Related Links:

Van Allen Probes Mission Overview:

Van Allen Probes Catch Rare Glimpse of Supercharged Radiation Belt:

For more information about Van Allen Probes, visit:

Image (mentioned), Video (mentioned), Text, Credits: NASA's Goddard Space Flight Center, by Lina Tran/Rob Garner.


'Pandora's Cluster' Seen by Spitzer

NASA - Spitzer Space Telescope patch.

Sept. 28, 2016

This image of galaxy cluster Abell 2744, also called Pandora's Cluster, was taken by the Spitzer Space Telescope. The gravity of this galaxy cluster is strong enough that it acts as a lens to magnify images of more distant background galaxies. This technique is called gravitational lensing.

The fuzzy blobs in this Spitzer image are the massive galaxies at the core of this cluster, but astronomers will be poring over the images in search of the faint streaks of light created where the cluster magnifies a distant background galaxy.

The cluster is also being studied by NASA's Hubble Space Telescope and Chandra X-Ray Observatory in a collaboration called the Frontier Fields project. Hubble's image of Abell 2744 can be seen here:

In this image, light from Spitzer's infrared channels is colored blue at 3.6 microns and green at 4.5 microns.

JPL manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at Caltech in Pasadena, California. Spacecraft operations are based at Lockheed Martin Space Systems Company, Littleton, Colorado. Data are archived at the Infrared Science Archive housed at the Infrared Processing and Analysis Center at Caltech. Caltech manages JPL for NASA.

For more information about Spitzer, visit:

Image, Text, Credits: NASA/JPL-Caltech/Martin Perez.


Rosetta measures production of water at comet over two years

ESA - Rosetta Mission patch.

28 September 2016

Over the past two years, Rosetta has kept a close eye on many properties of Comet 67P/Churyumov-Gerasimenko, tracking how these changed along the comet's orbit. A very crucial aspect concerns how much water vapour a comet releases into space, and how the water production rate varies at different distances from the Sun. For the first time, Rosetta enabled scientists to monitor this quantity and its evolution in situ over two years.

In a new study led by Kenneth C. Hansen of the University of Michigan, in the US, measurements of water production rate based on data from ROSINA, the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis, are compared with water measurements from other Rosetta instruments.

Image above: Comet 67P/C-G on 11 September 2015 - NavCam. Image Credits: ESA/Rosetta/NAVCAM, CC BY-SA IGO 3.0.

The combination of all instruments shows an overall increase of the production of water, from a few tens of thousands of kg per day when Rosetta first reached the comet, in August 2014, to almost 100 000 000 kg per day around perihelion, the closest point to the Sun along the comet's orbit, in August 2015. In addition, ROSINA data show that the peak in water production is followed by a rather steep decrease in the months following perihelion.

"We were pleasantly surprised to find such a good agreement between the data collected by all the various instruments in this unprecedented study of the water production rate's evolution for a Jupiter-family comet," says Hansen.

The scientists analysed almost two years' worth of data from ROSINA, which detects neutral water molecules with its Double-Focussing Mass Spectrometer (DFMS).

Graphic above: Water production rate measured by different instruments at Comet 67P/C-G. Image adapted from Hansen et al. (2016).

"This is by no means trivial: ROSINA performs measurements locally, at specific points around the comet, and we need a model to extend them to the entire atmosphere," adds Hansen.

The simplest model would be a spherical distribution of the outgassing centred around the nucleus but, given the complex shape and season cycle of Comet 67P/C-G, this would be a very crude approximation. For this reason, the ROSINA team developed a series of numerical simulations to accurately describe the comet's production of water, which are presented in a separate study led by Nicolas Fougere also of the University of Michigan.

From these simulations, which showed that the water production rate at a comet like 67P/C-G is highly inhomogeneous, Hansen and his colleagues derived an empirical model, which they then used to transform the local ROSINA measurements into estimates of the overall water production rate.

The results revealed that, during the first several months of observations, when the comet was at distances between 3.5 and 1.7 astronomical units (au) from the Sun, water was predominantly produced in the comet's northern hemisphere.

Animations above: Simulation of comet 67P's water production rate during northern summer. Images adapted from Hansen et al. (2016); animations courtesy of K.C. Hansen.

Then, in May 2015, the equinox marked the end of the 5.5-year long northern summer and the beginning of the short and intense southern summer. At that time, the comet was about 1.7 au from the Sun, and scientists expected that the peak of water production would drift slowly from the northern to the southern hemisphere; instead, this transition happened more abruptly than predicted. This was likely due to the complex shape of the nucleus, which causes highly variable illumination conditions including self-shadowing effects.

As expected, the production of water peaked between the end of August and early September 2015, about three weeks after the comet's perihelion, which took place on 13 August, 1.24 au from the Sun. The data hint at possible variations in the water production rate at this epoch: these might be due to the spacecraft's motion relative to the comet, but could also be an indication of actual changes to the outgassing dynamics, and will be subject of future in-depth investigation.

Animations above: Simulation of comet 67P's water production rate around perihelion. Images adapted from Hansen et al. (2016); animations courtesy of K.C. Hansen.

In addition to the ROSINA measurements, Hansen and his colleagues collated a series of previously published measurements of the water production rate at 67P/C-G. These include observations performed with the Microwave Instrument for the Rosetta Orbiter (MIRO) shortly before and after Rosetta had reached the comet, data from the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) obtained between November 2014 and January 2015, and measurements from the Ion Composition Analyser, part of the Rosetta Plasma Consortium (RPC) suite of instruments, obtained between October 2014 and April 2015.

RPC-ICA does not detect water directly, but rather measures the ratio of differently ionised Helium ions; since He+ ions arise mainly from collisions between alpha particles (He2+) from the solar wind and neutral molecules, such as water, found in the comet's atmosphere, this ratio can be used to estimate the amount of water produced at the comet.

Hansen and his collaborators have found some small discrepancies between the various data sets: for example, the measurements from ROSINA yield systematically higher values than those from VIRTIS. One possible reason for this is the different nature of the two experiments: ROSINA samples the gas in the coma at the spacecraft's position, while VIRTIS tends to observe closer to the nucleus, where the water production activity is potentially more confined than it is further out in the coma. The difference in measurements techniques and the discrepancy could potentially indicate an extended source of water in the coma itself, for example icy grains that are lifted into the coma and turn into gas a few kilometers above the surface.

Another difference was found between the MIRO measurements, which indicate a rising trend in the water production rate from June to September 2014, and the first months of ROSINA data, starting in August, pointing to an almost constant rate in the same period.

"This could be explained if a sudden surge in the water production happened around the time of the first MIRO measurement, a few weeks before Rosetta's rendezvous with 67P/C-G, and the beginning of ROSINA observations," says Hansen.

The scientists also compared the comet's production rate of water to that of dust, which can be measured via ground-based observations and was recently reported in a study led by Colin Snodgrass of the Open University, UK. These observations were performed with a number of robotic telescopes across the globe, from Chile to Hawaii and the Canary Islands.

"The correlation between the production rate of water and dust, both before and after perihelion, is impressive, suggesting that the gas-to-dust ratio remained constant over this long period," explains Hansen.

Based on the water production rate, the team estimated that the comet lost some 6.4 billion kg of water to space over the period monitored by Rosetta, with the most intense mass loss happening near perihelion. The total mass loss, taking into account other gas molecules and in particular the dust, could be roughly 10 times larger than that and, if distributed uniformly across the comet nucleus, it would translate into a reduction of 2 to 4 metres.

"This study shows how cross comparison between different instruments and simulations is beginning to reveal the comet further," says Matt Taylor, Rosetta project scientist at ESA.

"Connecting in-situ measurements from Rosetta with ground-based observations was a major science goal for the mission and it is wonderful to see this cooperation in action," concludes Kathrin Altwegg, ROSINA principal investigator.

Notes for Editors:

"Evolution of water production of 67P/Churyumov-Gerasimenko: An empirical model and a multi-instrument study" by K.C. Hansen et al. is published in the special issue of Monthly Notices of the Royal Astronomical Society, "The ESLAB 50 Symposium - spacecraft at comets from 1P/Halley to 67P/Churyumov-Gerasimenko".

"Direct Simulation Monte-Carlo Modeling of the Major Species in the Coma of Comet 67P/Churyumov-Gerasimenko" by N. Fougere et al., and "The perihelion activity of comet 67P/Churyumov-Gerasimenko as seen by robotic telescopes" by C. Snodgrass et al. are also published in the same special issue.

Published studies:;stw2300v1

Related links:

Comet viewer tool:

Where is Rosetta?:

For more information about Rosetta mission, visit:

Rosetta overview:

Rosetta in depth:

Image (mentioned), Graphic (mentioned), Animations (mentioned), Text, Credit: European Space Agency (ESA).

Best regards,

mardi 27 septembre 2016

NASA Develops Satellite Concept to Exploit Rideshare Opportunities

NASA - Goddard Space Flight Center logo.

Sept. 27, 2016

Each time a rocket blasts off to deliver a primary payload into space, it typically does so with room to spare — a reality that got NASA engineer Joe Burt thinking.

Why not exploit that unused capacity and create a sealed, pressurized, thermally controlled capsule that could take advantage of rideshare opportunities while accommodating less-expensive, off-the-shelf instrument components typically used in laboratory-like settings? Several years in the making, Burt and his team at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, now are ready to validate portions of such a system.

Called the Capsulation Satellite, or CapSat for short, the system is a hockey puck-shaped structure that measures roughly 40 inches wide and 18 inches tall. Purposely designed as either a stand-alone system or stacked depending on payload needs, each capsule is capable of carrying about 661 pounds of payload into orbit — a microsatellite-class weight not accommodated by the increasingly popular CubeSat platform whose instruments typically weigh two to six pounds.

Image above: Goddard engineer Joe Burt now is developing a satellite system that would take advantage of unused capacity on launch vehicles, while accommodating less-expensive, off-the-shelf instrument components typically used in laboratory-like settings. Image Credits: NASA/W. Hrybyk.

With funding from NASA’s Earth Science Technology Office, or ESTO, Burt and his team will validate CapSat’s all-important thermal-control system in a thermal-vacuum chamber test in late September. The system uses thermostatically controlled fans — much like those used to cool electronic equipment on Earth — to circulate air over hot and cold plates located inside the craft. This maintains a constant temperature where instruments would experience little, if any, thermal degradation while on orbit, Burt said.

Under the ESTO-funded effort, Burt and Goddard detector expert Murzy Jhabvala also are conducting a study to scope out the specifics of flying a next-generation photodetector camera on a CapSat. The idea is that NASA could fly the detector on a constellation of CapSats to gather multiple, simultaneous measurements.

To show the concept’s feasibility, Jhabvala successfully installed in late July a laboratory version of his Strained-Layer Superlattice Infrared Detector Camera inside the CapSat model. “The main purpose of the camera demonstration was to show how easily a laboratory-based instrument could become a flight instrument, complete with flyable electronics and software connecting it all the way back to the ground data display and analysis,” Burt said.

Nothing New Under the Sun

Burt is the first to admit that pressurized spacecraft are not new, and aside from its thermal-control system, CapSat is not in the technological vanguard. “Flying a mission with pressurized volume goes back to Sputnik,” he said. “There is nothing magical here. Terrestrial pressure in space is a tried-and-true approach,” Burt added. “It happens on the ISS (International Space Station) where scores of laptops are running every day. This is not a new idea.”

CapSat’s Distinguishing Attributes

What distinguishes CapSat is the fact that the capsule can accommodate heavier payloads. Perhaps more important, Burt specifically designed it to take advantage of a U.S. Air Force-developed secondary-payload carrier called the Evolved Expendable Launch Vehicle Secondary Payload Adaptor, or ESPA ring. Working with Moog CSA Engineering, of Mountain View, California, the Air Force created the ring to accommodate as many as six payloads beneath the primary spacecraft, exploiting the thousands of pounds of unused cargo space on many rockets.

Image above: CapSat is a pressurized platform designed to carry laboratory-style instruments into space. Image Credits: NASA/W. Hrybyk.

Goddard’s new Rideshare Office estimates that between 2015 and 2023, NASA will launch a number of missions whose total combined unused mass-to-orbit will exceed 46,300 pounds. “At an average launch cost of a million dollars-per-kilogram-to-orbit — even CubeSats cost about that — hundreds of millions of dollars in launch-vehicle costs are going unutilized,” said Bob Caffrey, who heads the Rideshare Office. “There really needs to be a paradigm shift,” he added.

In sharp contrast, Burt estimates that CapSat would reduce today’s launch costs of $1-million-per-kilogram-to-orbit to just $50,000-per-kilogram by using a pressurized volume to take advantage of the unused capacity.

Rideshare Opportunities Blossom

Also to consider, he added, is the fact that since its initial development in the early 2000s, the ESPA ring has become the de facto standard for secondary payload carriers, with a growing list of users and opportunities.

In 2009, NASA used the ESPA ring to deploy its Lunar Crater Observation and Sensing Satellite, which flew as a secondary payload on the Lunar Reconnaissance Orbiter. Private industry uses it, too. Late last year, SpaceX, of Hawthorne, California, used ESPA rings to mount 11 Orbcomm OG-2 communication satellites inside the Falcon 9 rocket, resulting in a successful deployment.

In the meantime, the U.S. Air Force has announced that it plans to fly the ESPA ring on all future launch vehicles. It also has developed a process for selecting potential rideshare payloads and is creating other versions of the carrier to accommodate a broader range of users. NASA, too, plans to take better advantage of the unused cargo capacity and will be providing rideshare opportunities on its future missions, Burt said.

“Secondary payloads are part of growing trend toward the increasing diversity of platforms used in pursuing space and Earth science,” said Greg Robinson, NASA Science Mission Directorate Deputy Associate Administrator for Programs. “Today, many U.S. government, academic, and industry partners are looking for ways to use secondary payloads as platforms to enable science, mature technologies, and enable workforce development,” he added.

Time is Ripe

Given this confluence of events, the time is ripe for NASA to develop a platform like CapSat, Burt said, adding that Goddard’s Strategic Partnerships Office now is pursuing a patent on the CapSat technology. Not only is it compatible with the ESPA ring, it also is capable of carrying heavier instruments, even those originally built for a terrestrially based laboratory testing. Such a platform, which Burt believes industry ultimately should manufacture and offer at competitive prices, would significantly reduce mission-development schedules and costs.

Image above: Goddard engineer Joe Burt is applied the CapSat concept to create a smaller pressurized platform, which he calls CapSIT. Image Credit: NASA.

Since CapSat’s roll out, a number of possible new missions have approached Burt about possibly using the platform. One of the more promising opportunities, he said, is flying a debris sensor called DRAGONS, which is short for Debris Resistive Acoustic Grid Orbital Navy-NASA Sensor, on as many as four CapSats. Furthermore, Burt also is developing a smaller CapSat-type platform, which he calls the CapSat Science Instrument Tube, or CapSIT. In this architecture, the pressurized volume for the CapSat science instrument is reduced to a tube about three feet long and one foot wide.

“The bottom line is that the CapSat concept has the potential to make science missions more affordable,” said Azita Valinia, an ESTO executive who awarded the ESTO study. “If proven successful, the CapSat architecture can change the cost paradigm for science missions.”

Robinson agrees. “It’s exciting to see what is being built by the Goddard team to provide researchers a capable and reliable platform for fast turn-around, lower-cost payloads,” he continued. “When combined with the wide array of launch opportunities for these secondary payloads, the opportunities for platforms like CapSat are showing real promise,” he said.

For more technology news, go to:

Goddard Space Flight Center:

Science Instruments:

Images (mentioned), Text, Credits: NASA’s Goddard Space Flight Center, by Lori Keesey/Lynn Jenner.


Fire and Water Studies for Space and Earth Benefits

ISS - Expedition 49 Mission patch.

September 27, 2016

Two different studies are under way on the International Space Station – one will observe how fuel burns in space while another is researching how medicine dissolves in water. Results from both experiments could benefit humans on Earth and in space.

Astronaut Takuya Onishi is setting up the Group Combustion experiment that will explore how flames spread across a cloud of fuel droplets. Observations may help engineers design advanced rocket engines, as well as gas turbines and industrial furnaces.

Image above: This sunrise is one of 16 the space station crew sees everyday aboard the space station. Image Credit: NASA.

NASA astronaut Kate Rubins is researching how pharmaceutical materials dissolve in water for the Hard to Wet Surfaces study. The space environment can reveal processes masked by Earth’s gravity and help scientists improve how drugs work in humans on Earth and in space.

Commander Anatoly Ivanishin was back at work studying how charged particle systems react when trapped in a magnetic field. The veteran cosmonaut, who is on his second station mission, also explored new methods to detect and target landmarks improving Earth photography techniques.

Related links:

Group Combustion experiment:

Hard to Wet Surfaces study:

Charged particle systems:

Methods to detect and target landmarks:

Space Station Research and Technology:

International Space Station (ISS):

Image (mentioned), Text, Credits: NASA/Mark Garcia.


lundi 26 septembre 2016

NASA Armstrong Celebrates 70 Years of Flight Research

NASA - Armstrong Flight Research Center patch.

 Sept. 26, 2016

The X-15 rocket plane. Image Credit: NASA

The National Advisory Committee for Aeronautics sent 13 engineers and support staff to California’s Mojave Desert in September 1946 to assist in the quest for supersonic flight.

The X-1 aircraft represented the first U.S. Air Force designated “X” or experimental vehicle. It officially exceeded Mach 1 Oct. 14, 1947. Mach is measured from 650-750 mph depending on a number of factors such as atmospheric conditions and altitude. The NACA had its first supersonic flight, also on an X-1 aircraft, March 4, 1948.

The small contingent of NACA, which became NASA in 1958, staff were expected to complete the single project and wrap up operations at the desert outpost. Now 70 years later, the NASA Armstrong Flight Research Center in California continues to test the latest aviation marvels through flight.

A number of X-planes followed, designed to find answers related to speed, temperature, structure, control and human physiology, work that continued as the agency morphed from the NACA to NASA in 1958. One such aircraft was the X-15 rocket plane program that posted a then record 199 flights, including binders of research, and an official record of speed at Mach 6.7, or more than 4,500 mph, and an unofficial altitude record at the edge of space at 67 miles, or 354,200 feet.

Image above: Please see the entire X-Press salute to NASA Armstrong’s 70th Anniversary at:
Image Credits: NASA Photo Collage/Ken Ulbrich.

The center’s initial focus was aeronautics, but the X-15 bridged the worlds of high speed aircraft with the research needed to reach beyond Earth’s atmosphere. The development of reaction control systems for the legendary X-15 was critical for spaceflight, as it provided a way to control a vehicle in the absence of dynamic pressure as is encountered in space.

The Lunar Landing Research Vehicle also was tested here. After the aircraft that simulated flight of the one-sixth gravity of Earth that astronauts would face on the moon. The research contributed to construction of  the Lunar Landing Training Vehicles that  were built and sent to NASA Johnson Space Center in Houston (then called the Manned Spaceflight Center). Apollo astronauts used the spindly aircraft to train for landing on the moon. The practice was helpful when Neil Armstrong piloted the Lunar Module manually to the lunar surface to take the first steps.

Lifting body aircraft were designed to validate the shape of a space return vehicle that could land like an aircraft instead of descending under a parachute and landing in the ocean. When the Sierra Nevada Corporation’s Dream Chaser spacecraft returns for additional approach and landing tests at Armstrong in 2017, it will continue the center’s historic role with lifting body shaped vehicles.

Image above: The X-1B reaction control system thrusters are tested in 1958 and later proven on the X-15 as a way to control a vehicle in the absence of dynamic pressure. Image Credit: NACA Photo.

Space Shuttle Enterprise’s approach and landing tests marked another contribution to space-related technology. A large steel gantry called the Mate Demate Device slowly lifted the shuttle onto the back of a specially modified NASA 747 Shuttle Carrier Aircraft. Enterprise was then launched from the back of the large aircraft to confirm shuttles could safely land unpowered.

The center retained a role with the space shuttles during the 30-year program, often hosting landings. Most early landings and first flights of new orbiters or return to flight operations took place at the center. The shuttles concluded 54 space missions with a landing at Edwards and a return trip on the NASA 747 to Kennedy Space Center in Florida.

Also of consequence of the space program, Armstrong was involved in testing the pad launch abort test capsule for NASA's Orion spacecraft, which is intended to eventually take astronauts on a journey to Mars. The capsule’s instrumentation and wiring took place at the center, as did its weight and balance, center of gravity and combined systems testing. The center also led the construction of the launch site at White Sands Missile Range in New Mexico where the capsule successfully launched May 6, 2010.

Image above: Space Shuttle Endeavour is affixed atop NASA’s 747 Shuttle Carrier Aircraft as it prepares for a landing at Los Angeles International Airport to conclude a final flight on Sept. 21, 2012. Image Credits: NASA Photo/Jim Ross.

Software for the agency’s Space Launch System rocket, which will launch Orion into deep space, was tested onboard Armstrong’s F-18 aircraft that flew nearly vertical to simulate a rocket flight path. An Armstrong F-18 was also used to test a radar system that helped land the Mars Curiosity rover on the surface of the planet in 2012.

In fact, Armstrong manages the Space Technology Mission Directorate's Flight Opportunities program, which seeks to mature space technology development through flights on commercial suborbital launch vehicles. The program funds the flights in space-like environments of new technologies of interest to NASA’s space exploration goals. Among other successes, the program has matured a 3-D printer is now on the International Space Station that can print parts and tools.

Speed isn’t only the regime of space vehicles. Armstrong researchers explored the realm of hypersonic speed with the first integrated hypersonic scramjet engine, the X-43. The air-breathing engines propelled the vehicle to speeds of Mach 7, about 4,500 mph, and nearly to Mach 10, or roughly 6,500 mph, during separate flights in 2004.

Image above: The undamaged Pad Abort-1 flight test crew module rested in the desert after a successful flight test May 6, 2010, at the White Sands Missile Range in New Mexico. Image Credits: NASA/JSC.

A defining feature of all supersonic aircraft is a loud sonic boom created when an aircraft exceeds the speed of sound. Over the years NASA researchers have worked to mitigate or soften these booms, modifying aircraft to test theories and new technologies.

Seven decades after helping to create the first sonic boom, NASA is designing a new X-plane to demonstrate quiet boom capabilities, which could lead to supersonic flight without startling people on the ground, a key hurdle to amending rules that currently prohibit overland supersonic operations. The preliminary design review for the Quiet Supersonic Transport human-piloted X-plane is currently underway.

Unmanned Aircraft Systems, or UASs, are another major area that the center has researched with experimental vehicles since the 1960s. Engineers have continued to investigate this area of aeronautics including shapes and subsystems.

Armstrong and other NASA centers remain involved in the technology development of UAS to help in the eventual integration of Unmanned Aircraft Systems into the National Airspace System.

NASA Armstrong Flight Research Center: 70 Years of Flight Research

Video above: This video showcasing 70 years of research at NASA's Armstrong Flight Research Center in Edwards, California, began airing on NASA television Sept. 26. Armstrong, the agency's lead center for atmospheric flight research operations, began its storied history in California's high desert in September 1946. Video Credits: NASA Armstrong Video.

In the early 1990s Armstrong managed the Environmental Research Aircraft and Sensor Technology program with industry partners. The idea was to develop emerging environmentally friendly aircraft, sensors and technologies needed to fly the emerging class of aircraft safely and conduct science missions. The solar-powered Helios reached an altitude of 96,863 feet altitude during the program. Prototypes of the Predator-B aircraft later led to the NASA science platform named Ikhana, which is now used for science and aeronautical missions.

Sometimes technology advancements lead to revolutions in the way challenges are approached. For example, a specially-modified F-8 aircraft flown at Armstrong validated digital fly-by-wire control technology that replaced hydraulic systems. Military and commercial aviation companies subsequently integrated the systems into its aircraft. More recently, cars, motorcycles and boats are using systems with origins based in that research.

With an eye toward making aircraft technologies transferrable to commercial uses, the NASA Aeronautics Mission Directorate is planning to make it common for future aircraft to be more fuel efficient, quieter and produce fewer emissions. An example is the all-electric X-57 Maxwell X-plane intended to be high-efficiency, while reducing noise and emissions.

Image above: A rainbow frames the Stratospheric Observatory for Infrared Astronomy 747SP during its first Southern Hemisphere deployment in Christchurch, New Zealand, in July 2013. Image Credits: NASA Photo/Carla Thomas.

The center doesn’t fly airplanes only for aeronautics research. Specially modified aircraft based at Armstrong support NASA’s Airborne Science Program, flying scientists and specialized instruments around the world to study Earth and its changing environment. This includes a DC-8 flying laboratory, a C-20A aircraft, two ER-2 high-altitude aircraft and two Global Hawks.

Armstrong also operates and maintains the Stratospheric Observatory for Infrared Astronomy, or SOFIA. The NASA a 747SP has the world’s largest airborne infrared telescope. It flies above most of the atmosphere’s water vapor, which limits Earth-bound telescope observations. The result is clearer images of the universe and the ability to use the latest science instruments to capture extraordinary astronomical data about the solar system and far beyond.

Image above: An artist’s concept of NASA’s X-57 Maxwell aircraft shows the plane’s specially designed wing and electric motors. The X-57 is intended to demonstrate that electric propulsion can make planes quieter and more efficient and environmentally friendly. Image Credits: NASA Langley / Advanced Concepts Lab, AMA Inc.

It’s hard to predict how future aviation and space vehicles and their systems will evolve. However, it is certain that NASA Armstrong will build on its 70 years of success to validate the technologies that will drive exploration for a better tomorrow.

Leslie Williams, Christian Gelzer, Matt Kamlet and Mike Agnew contributed to this report.

Related links:

The National Advisory Committee for Aeronautics:

NASA Armstrong Flight Research Center:

The X-1 aircraft:

X-15 rocket plane program:


Dream Chaser spacecraft:

X-57 Maxwel:

Space Shuttles:

NASA's Orion spacecraft:

Space Technology Mission Directorate's Flight Opportunities program:

Unmanned Aircraft Systems into the National Airspace System:

Quiet Supersonic Transport:

Environmental Research Aircraft and Sensor Technology program:

The solar-powered Helios:

Lunar Landing Research Vehicle:

NASA Johnson Space Center:

International Space Station:

NASA Aeronautics Mission Directorate:

NASA’s Airborne Science Program:

C-20A aircraft:

DC-8 flying laboratory:

Global Hawks:

Stratospheric Observatory for Infrared Astronomy, or SOFIA:

Images (mentioned), Video (mentioned), Text, Credits: NASA Armstrong Flight Research Center/Jay Levine, X-Press Editor/Monroe Conner.

Best regards,

NASA’s Asteroid-Bound Spacecraft Aces Instrument Check

NASA - OSIRIS-REx Mission patch.

Sept. 26, 2016

Its science instruments have been powered on, and NASA’s OSIRIS-REx spacecraft continues on its journey to an asteroid. The spacecraft has passed its initial instrument check with flying colors as it speeds toward a 2018 rendezvous with the asteroid Bennu.

Last week NASA’s spacecraft designed to collect a sample of an asteroid ran the first check of its onboard instruments. Starting on Sept. 19, engineers controlling the Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) spacecraft powered on and operated the mission’s five science instruments and one of its navigational instruments. The data received from the checkout indicate that the spacecraft and its instruments are all healthy.

Image above: The first-light images of star fields from OCAMS’s MapCam and PolyCam illustrate each camera’s specialized function. MapCam’s medium resolution and wider field of view will help map the entire surface of Bennu in color. While PolyCam’s field of view is much smaller, it can see much fainter objects at a higher resolution. PolyCam’s ability to act as a telescopic will help the OSIRIS-REx team spot Bennu while it is still appears as a point of light against a field of stars. Image Credits: NASA/Goddard/University of Arizona.

Instrument testing commenced with the OSIRIS-REx Camera Suite (OCAMS), provided by the University of Arizona. On Monday, OCAMS executed its power-on and test sequence with no issues. The cameras recorded a star field in Taurus north of the constellation Orion along with Orion’s bright red star Betelgeuse. The three OCAMS cameras performed flawlessly during the test.

On Monday and Wednesday, the OSIRIS-REx Laser Altimeter (OLA), contributed by the Canadian Space Agency, conducted its test sequences, which included a firing of its laser.  All telemetry received from the OLA instrument was as expected.

On Tuesday, both the OSIRIS-REx Visible and Infrared Spectrometer (OVIRS), provided by NASA’s Goddard Space Flight Center, and the OSIRIS-REx Thermal Emissions Spectrometer (OTES), provided by Arizona State University, were separately powered on for tests. Data from both during the checkout showed that the instruments were healthy. The science measurements acquired from OTES exceeded the instrument’s performance requirements.

Image above: On Sept. 19, the OCAMS MapCam camera recorded a star field in Taurus, north of the constellation Orion as part of the OSIRIS-REx spacecraft’s post-launch instrument check. MapCam's first color image is a composite of three of its four color filters, roughly corresponding to blue, green, and red wavelengths. The three images are processed to remove noise, co-registered, and enhanced to emphasize dimmer stars. Image Credits: NASA/Goddard/University of Arizona.

On Wednesday, the student experiment from MIT, the Regolith X-ray Imaging Spectrometer (REXIS), executed its functional test with no problems.  And on Thursday, the Touch and Go Camera System (TAGCAMS) navigational camera was powered on and tested, and it operated as expected.  As part of its checkout, TAGCAMS took an image of the spacecraft’s Sample Return Capsule.

The downlink of the test data continued through Sunday via the spacecraft’s low gain antenna (LGA), which transmitted at 40 kbps to NASA’s Deep Space Network.

Goddard Space Flight Center provides overall mission management, systems engineering and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator. Lockheed Martin Space Systems in Denver built the spacecraft and is providing spacecraft flight operations. OSIRIS-REx is the third mission in NASA’s New Frontiers Program. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the agency’s New Frontiers Program for its Science Mission Directorate in Washington.

OSIRIS-REx (Origins Spectral Interpretation Resource Identification Security Regolith Explorer):

Images (mentioned), Text, Credits: NASA's Goddard Space Flight Center/Nancy Neal Jones/Karl Hille/University of Arizona/Erin Morton.