lundi 24 septembre 2018

Dust storms on Titan spotted by Cassini for the first time

ESA & NASA - Cassini-Huygens Mission to Saturn & Titan patch.

24 September 2018

Data from the international Cassini spacecraft that explored Saturn and its moons between 2004 and 2017 has revealed what appear to be giant dust storms in equatorial regions of Titan.

Dust storm on Titan

The discovery, described in a paper published in Nature Geoscience today, makes Titan the third body in the Solar System where dust storms have been observed – the other two are Earth and Mars. 

The observation is helping scientists to better understand the fascinating and dynamic environment of Saturn’s largest moon.

“Titan is a very active moon,” says Sebastien Rodriguez, an astronomer at the University Paris Diderot, France, and the lead author of the paper.

“We already know that about its geology and exotic hydrocarbon cycle. Now we can add another analogy with Earth and Mars: the active dust cycle.”

Complex organic molecules, which result from the atmospheric chemistry and, once large enough, eventually fall to the surface, can be raised from large dune fields around Titan’s equator.

Spotting dust storms on Titan

Titan is an intriguing world – in a way quite similar to Earth. In fact, it is the only moon of the Solar System with a substantial atmosphere and the only celestial body other than our planet where stable bodies of surface liquid are known to still exist.

There is one big difference though: while on Earth such rivers, lakes and seas are filled with water, on Titan it is primarily methane and ethane that flows through these liquid reservoirs. In this unique methane cycle, the hydrocarbon molecules evaporate, condense into clouds and rain back onto the ground.

The weather on Titan varies from season to season, just as it does on Earth. In particular around the equinox, the time when the Sun crosses Titan’s equator, massive clouds can form in tropical regions and cause powerful methane storms. Cassini observed such storms during several of its Titan flybys.

When Sébastien and his team first spotted three unusual equatorial brightenings in infrared images taken by Cassini around the moon’s 2009 northern equinox, they thought these might be exactly such methane clouds. A thorough investigation revealed they were something completely different, however.

“From what we know about cloud formation on Titan, we can say that such methane clouds in this area and in this time of the year are not physically possible,” says Sébastien.

“The convective methane clouds that can develop in this area and during this period of time would contain huge droplets and must be at a very high altitude, much higher than the 10 km that modelling tells us the new features are located.”

Dust storms on Titan

The researchers were also able to rule out that the features were actually on the surface in the form of frozen methane rain or icy lavas. Such surface spots would have a different chemical signature and remain visible for much longer, while the bright features in this study were only visible for 11 hours to five weeks.

Modelling also showed that the features must be atmospheric, but still close to the surface – most likely forming a very thin layer of tiny solid organic particles. Since they were located right over the dune fields around Titan’s equator, the only remaining explanation was that the spots were actually clouds of dust raised from the dunes.

Sébastien says that while this is the first ever observation of a dust storm on Titan, the finding is not surprising. 

“We believe that the Huygens probe, which landed on the surface of Titan in January 2005, raised a small amount of organic dust upon arrival due to its powerful aerodynamic wake,” says Sébastien.

“But what we spotted here with Cassini is at a much larger scale. The near-surface wind speeds required to raise such an amount of dust as we see in these dust storms would have to be very strong – about five times as strong as the average wind speeds estimated by the Huygens measurements near the surface and with climate models.”

Huygens landing on Titan

Huygens made only one direct measurement of the speed of the surface wind just before its landing on Titan, and at that time it was very low, less than 1 metre per second.

“For the moment, the only satisfactory explanation for these strong surface winds is that they might be related to the powerful gusts that may arise in front of the huge methane storms we observe in that area and season,” concludes Sébastien.

This phenomenon, called ‘haboob’, can also be observed on Earth with giant dust clouds preceding storms in arid areas.

The existence of such strong winds generating massive dust storms also implies that the underlying sand can be set in motion, too, and that the giant dunes covering Titan’s equatorial regions are still active and continually changing. 

The winds could be transporting the dust raised from the dunes across large distances, contributing to the global cycle of organic dust on Titan, and causing similar effects to those that can be observed on Earth and Mars.

Notes for editors:

“Observational evidence for active dust storms on Titan at equinox,” by S. Rodriguez et al. is published in Nature Geoscience:

The results were obtained with Cassini’s Visual and Infrared Mapping Spectrometer.

The Cassini-Huygens mission is a cooperative project of NASA, ESA and the Italian Space Agency.

Images, Animation, Video, Text, Credits: ESA/Markus Bauer/Nicolas Altobelli/University Paris Diderot/Sébastien Rodriguez/IPGP/Labex UnivEarthS/University Paris Diderot – C. Epitalon & S. Rodriguez et al. 2018/NASA/JPL-Caltech/University of Arizona/ESA/C. Carreau.

Best regards,

samedi 22 septembre 2018

Japanese Rocket Blasts Off to Resupply Station

JAXA - HB-II Transfer Vehicle (HTV-7) Mission patch.

September 22, 2018

Image above: Japan’s H-IIB rocket with the HTV-7 resupply ship on top blasts off at 1:52 p.m. EDT on Friday, Sept. 22 (2:52 a.m. Sept. 23 Japan standard time) from the Tanegashima Space Center. Image Credits: JAXA/NASA.

The Japan Aerospace Exploration Agency (JAXA)’s H-IIB rocket launched at 1:52 p.m. EDT on Friday, Sept. 22 (2:52 a.m. Sept. 23 Japan standard time) from the Tanegashima Space Center in southern Japan. At the time of launch, the space station was 254 miles over the southwest Pacific, west of Chile.

HTV-7 launched by H-IIB F7

A little more than 15 minutes after launch, the unpiloted H-II Transfer Vehicle-7 (HTV-7) cargo spacecraft successfully separated from the rocket and began its four-and-a-half rendezvous with the International Space Station.

On Thursday, Sept. 27, the HTV-7 will approach the station from below and slowly inch its way toward the orbiting laboratory. Expedition 56 Commander Drew Feustel and Flight Engineer Serena Auñón-Chancellor of NASA will operate the station’s Canadarm2 robotic arm to capture the spacecraft as it approaches. Flight Engineer Alexander Gerst of ESA (European Space Agency) will monitor HTV-7 systems during its approach. Robotic ground controllers will then install it on the Earth-facing side of the Harmony module, where it will remain for several weeks.

Image above: The Japanese HTV-6 cargo vehicle is seen during final approach to the International Space Station before it is captured by the remote Canadarm 2. HTV-6 launched from the Tanegashima Space Center in southern Japan on Friday, Dec. 9, and arrived at the station on Tuesday, Dec. 13. The vehicle was loaded with more than 4.5 tons of supplies, water, spare parts and experiment hardware. Image Credit: NASA.

NASA TV coverage of the Sept. 27 rendezvous and grapple will begin at 6:30 a.m. ET. Capture is scheduled for approximately 8:00 a.m. After a break, NASA TV coverage will resume at 10:30 a.m. for spacecraft installation to the space station’s Harmony module.

In addition to new hardware to upgrade the station’s electrical power system, the HTV-7 is carrying a new sample holder for the Electrostatic Levitation Furnace (JAXA-ELF), a protein crystal growth experiment at low temperatures (JAXA LT PCG), an investigation that looks at the effect of microgravity on bone marrow (MARROW), a Life Sciences Glovebox, and additional EXPRESS Racks.

Related links:

JAXA Press Release:

H-II Transfer Vehicle-7 (HTV-7):

Electrostatic Levitation Furnace (JAXA-ELF):



Life Sciences Glovebox:



Space Station Research and Technology:

International Space Station (ISS):

Images (mentioned), Video, Text, Credits: NASA/Mark Garcia/JAXA/NASA TV/SciNews.

Best regards,

vendredi 21 septembre 2018

Space Station Science Highlights: Week of September 17, 2018

ISS - Expedition 56 Mission patch.

Sept. 21, 2018

The Expedition 56 crew members aboard the International Space Station conducted a variety of biomedical and physical science research this week as they continued to await the arrival of Japan Aerospace Exploration Agency’s (JAXA) HTV-7 resupply vehicle.

Image above: A view of the European Space Agency Columbus Lab Module, looking across into the Japanese Experiment Module. Image Credit: NASA.

As a result of inclement weather, JAXA has postponed the launch of a cargo spacecraft from the Tanegashima Space Center in southern Japan to Saturday, Sept. 22. Live coverage of the launch will begin at 1:30 p.m. on NASA Television and the agency’s website.

Learn more about the science happening on station below:

Crew prepares for ACME operations

The Advanced Combustion Microgravity Experiment (ACME) investigation is a set of five independent studies of gaseous flames to be conducted in the Combustion Integration Rack (CIR), one of which being Electric-Field Effects on Laminar Diffusion Flames (E-FIELD Flames).

In E-FIELD Flames, an electric field with voltages as high as 10,000 volts is established between the burner and a mesh electrode. The motion of the charged ions, which are naturally produced within the flame, are strongly affected by a high-voltage electric field. The resulting ion-driven wind can dramatically influence the stability and sooting behavior of the flame. Measurements are made of electric-field strength, the ion current passing through the flame, and flame characteristics such as the size, structure, temperature, soot, and stability. Conducting the tests in microgravity allows for simplifications in the analysis, enabling new understanding and the potential development of less polluting and more efficient combustion technology for use on Earth.

Animation above: Oleg Artemyev of Roscosmos works within the Combustion Integration Rack (CIR) as a part of the ACME investigation.
The crew conducted maintenance on the rack in order to prepare for E-FIELD Flames to begin. Animation Credit: NASA.

This week, in preparation for E-FIELD Flames operations, crew members replaced several components including power supply, burner, igniter tip and controller, as well as installing the mesh.

Crew replaces materials for experiment run

The Atomization experiment uses a high-speed camera to observe the disintegration processes of low-speed water jets under various conditions. These observations validate a new atomization concept, developed from drop tower experiments on Earth, to correctly predict the breakup positions of a liquid stream. This information is key to improving spray combustion processes inside rocket and jet engines.

Animation above: NASA astronaut Serena Auñón-Chancellor works to replace sample syringes and a water trip in preparation for an Atomization experiment run. Animation Credit: NASA.

This week, the crew replaced sample syringes and a water trap, allowing the ground team to initiate and complete an experiment run.

Samples collected, DNA sequenced as a part of BEST investigation

Biomolecule Extraction and Sequencing Technology (BEST) seeks to advance use of sequencing in space in three ways: identifying microbes aboard the space station that current methods cannot detect, assessing microbial mutations in the genome because of spaceflight and performing direct RNA sequencing.

Image above: View during Biomolecule Extraction and Sequencing Technology (BEST) Experiment 1 Part 1. The objective is to identify bacteria directly from ISS surfaces through the swabbing and extraction of DNA from the swab using mini PCR. The DNA will undergo further sample preparation and sequencing with the Biomolecule Sequencer. Image Credit: NASA.

This week, crew members performed operations to initiate DNA sequences from samples collected on Monday of this week. 

Learn more about the BEST investigation here:

Crew conducts maintenance on camera used in sediment investigation

Binary Colloidal Alloy Test - Cohesive Sediment (BCAT-CS) studies dynamic forces between sediment particles that cluster together. For the study, scientists sent mixtures of quartz and clay particles to the space station and subjected them to various levels of simulated gravity. Conducting the experiment in microgravity makes it possible to separate out different forces that act on sediments and look at the function of each.

View from inside ISS Cupola. Image Credit: NASA

Understanding how sediments behave has a range of applications on Earth, including predicting and mitigating erosion, improving water treatment, modeling the carbon cycle,  sequestering contaminants and more accurately finding deep sea oil reservoirs.

Space to Ground: Long Distance Call: 09/21/2018

Video credits: NASA Johnson.

This week, the crew conducted maintenance such as adjusting the camera’s alignment, changing the battery on the camera’s flash, and refocusing the camera itself.

Other work was done on these investigations: Microbial Tracking-2, Plant Habitat-1, Plant Habitat, ISS HAM, SpaceTex-2, DOSIS-3D, Metabolic Space, Biochemical Profile, Cell Free Epigenome/Medical Proteomics, Veggie, HRF-2, MUSES, ZeroG Battery Testing, JAXA ELF, and Team Task Switching.

Related links:

Expedition 56:

NASA Television:

Advanced Combustion Microgravity Experiment (ACME):

Combustion Integration Rack (CIR):

E-FIELD Flames:


Biomolecule Extraction and Sequencing Technology (BEST):

Binary Colloidal Alloy Test - Cohesive Sediment (BCAT-CS):

Microbial Tracking-2:

Plant Habitat-1:

Plant Habitat:




Metabolic Space:

Biochemical Profile:

Cell Free Epigenome:

Medical Proteomics:




ZeroG Battery Testing:


Team Task Switching:

Spot the Station:

Space Station Research and Technology:

International Space Station (ISS):

Images (mentioned), Animations (mentioned), Video (mentioned), Text, Credits: NASA/Michael Johnson/Yuri Guinart-Ramirez, Lead Increment Scientist Expeditions 55 & 56.

Best regards,

NASA’s MAVEN Selfie Marks Four Years in Orbit at Mars

NASA - MAVEN Mission logo.

Sept. 21, 2018

Today, NASA’s MAVEN spacecraft celebrates four years in orbit studying the upper atmosphere of the Red Planet and how it interacts with the Sun and the solar wind. To mark the occasion, the team has released a selfie image of the spacecraft at Mars.

“MAVEN has been a tremendous success,” said Bruce Jakosky, MAVEN principal investigator from the University of Colorado, Boulder. “The spacecraft and instruments continue to operate as planned, and we’re looking forward to further exploration of the Martian upper atmosphere and its influence on climate.”

Image above: This image is a composite selfie taken by MAVEN's Imaging Ultraviolet Spectrograph (IUVS) instrument that normally looks at ultraviolet emissions from the Martian upper atmosphere. Lines are sketched in to show approximately where components of the spacecraft are that were not able to be imaged due to the limited motion of the instrument around its support boom. Thrusters can be seen at the lower left and right, the Electra communications antenna at the bottom toward the left, the magnetometer and sun sensor at the end of the solar-panels at the upper left, the tip of the communications antenna at the top middle. In addition, the shadow of the IUVS and of its support boom can be seen down the middle of the spacecraft body. Image Credits: University of Colorado/NASA.

MAVEN has obtained a selfie image, looking at ultraviolet wavelengths of sunlight reflected off of components of the spacecraft. The image was obtained with the Imaging Ultraviolet Spectrograph (IUVS) instrument that normally looks at ultraviolet emissions from the Martian upper atmosphere. The IUVS instrument is mounted on a platform at the end of a 1.2-m boom (its own “selfie stick”), and by rotating around the boom can look back at the spacecraft. The selfie was made from 21 different images, obtained with the IUVS in different orientations, that have been stitched together.

The mission launched on Nov. 18, 2013, and went into orbit around Mars on Sept. 21, 2014. During its time at Mars, MAVEN has answered many questions about the Red Planet.

Image above: This image identifies the various parts of the MAVEN spacecraft selfie, with an artist's sketch of the spacecraft for comparison. Individual components are identified in both the selfie and the computer image. Notice that the computer-generated image shows the IUVS instrument, but that it is not visible in the actual selfie (because that’s what’s taking the picture!). Image Credits: University of Colorado/NASA.

The spacecraft has made the following discoveries and science results, among others:

- Acquired compelling evidence that the loss of atmosphere to space has been a major driver of climate change on Mars.

- Determined that the stripping of ions from the upper atmosphere to space during a solar storm can be enhanced by a factor of 10 or more, possibly making these storms a major driver of loss of the atmosphere through time.

- Discovered two new types of Martian auroras – diffuse aurora and proton aurora. Neither type has a direct connection to the local or global magnetic field or to magnetic cusps, as auroras do on Earth.

- MAVEN has made direct observations of a metal-ion layer in the Martian ionosphere, the first direct detection on any planet other than the Earth. The ions are produced by a steady influx of incoming interplanetary dust.

- Demonstrated that the majority of the CO2 on the planet has been lost to space and that there isn’t enough left to terraform the planet by warming it, even if the CO2 could be released and put back into the atmosphere.

Next year, engineers will initiate an aerobraking maneuver by skimming the spacecraft through Mars’ upper atmosphere to slow it. This will reduce the highest altitude in MAVEN’s orbit to enhance its ability to serve as a communications relay for data from rovers on the surface. Currently, MAVEN carries out about one relay pass per week with one of the rovers. This number will increase after NASA’s InSight mission lands on Mars in November.

Image above: This image shows part of the MAVEN spacecraft and the limb of Mars in the background. This is one of the individual images that make up the selfie, showing the magnetometer and sun sensor at the end of the solar panel. Mars is seen in the background; the dark spot at the top of the image is the Olympus Mons volcano. Image Credits: University of Colorado/NASA.

MAVEN completed its primary mission in November 2015 and has been operating in an extended mission since that time, continuing its productive investigation of Mars’ upper atmosphere and exploring additional opportunities for science that the new relay orbit will bring.

MAVEN’s principal investigator is based at the University of Colorado’s Laboratory for Atmospheric and Space Physics, Boulder. The university provided two science instruments and leads science operations, as well as education and public outreach, for the mission. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the MAVEN project and provided two science instruments for the mission. Lockheed Martin built the spacecraft and is responsible for mission operations. The University of California at Berkeley’s Space Sciences Laboratory also provided four science instruments for the mission. NASA’s Jet Propulsion Laboratory in Pasadena, California, provides navigation and Deep Space Network support, as well as the Electra telecommunications relay hardware and operations.

For more information on the MAVEN mission, visit:

Images (mentioned), NASA/Karl Hille/GSFC/Nancy Jones.


A satellite captures space junk for the first time

Space Debris illustration.

September 21, 2018

Image above: In this September 2018 image made from video provided by the University of Surrey, a net is launched from a satellite to catch a test object. The experiment was conducted to research ways to clean up debris in orbit around Earth. Image Credit: University of Surrey.

An experimental cleanup device called RemoveDebris has successfully cast a net around a dummy satellite, simulating a technique that could one day capture spaceborne garbage.

The test, which was carried out this week, is widely believed to be the first successful demonstration of space cleanup technology, experts told CNN. And it signals an early step toward solving what is already a critical issue: debris in space.

Millions of pieces of junk are whirling around in orbit, the result of 50 years of space travel and few regulations to keep space clean. At orbital speeds, even a small fleck of paint colliding with a satellite can cause critical damage.

Various companies have plans to send thousands of new satellites into low-Earth orbit, already the most crowded area.

The RemoveDebris experiment is run by a consortium of companies and researchers led by the UK's Surrey Space Centre and includes Airbus, Airbus-owned Surrey Satellite Technology Ltd. and France's Ariane Group.

Researchers captured the test capture on video, which was shared online Wednesday

Guglielmo Aglietti, the director of Surrey Space Centre, said that an operational version of the RemoveDebris technology would cast out a net that remains tethered to the main satellite so the debris can be dragged out of orbit. It could target large pieces of junk, including dead satellites up to 10 meters long.

For the test, however, the dummy satellite and net were left to orbit freely. So it essentially created another piece of uncontrolled debris. But Aglietti said it won't pose a risk for long. The experiment was conducted in a very low orbit, so the dummy satellite should fall out of the sky within a few months and plummet to its grave.

The RemoveDebris satellite will conduct a few more experiments in the coming months, including testing navigation features that could help guide the satellite to a specific piece of debris. It will also test out a harpoon technology that could capture hulking satellites with a spear attached to a string.

Jonathan McDowell, an astrophysicist at the Harvard-Smithsonian Center for Astrophysics, said the success of this week's experiment was exciting, but he cautioned against "over-hyping" it.

"There are dozens of good ideas about how to address this problem, but the devil is always in the details," he said.

A company called AGI helps track and map orbital debris

There are still enormous barriers to clear before operational cleanup missions will be underway, he said, and the most daunting is figuring out how to fund such projects.

The RemoveDebris experiment cost roughly 15 million euros, or $18 million, and it was jointly funded by the European Commission and the groups involved in the project. That's relatively cheap as far as space travel goes. But McDowell pointed out that it will take more than one satellite to make a significant impact.

"You can't just have like one garbage truck going around and picking up each [piece of debris]. To change from one orbit to another requires just as much rocket fuel as getting up there in the first place, so it's tricky to find a solution that is cost effective," McDowell said.

RemoveDebris Net Experiment Raw Footage

Aglietti, the Surrey professor who helped lead the RemoveDebris project, said "the challenge will be to convince the relevant authorities to sponsor these mission."

Aglietti said he hopes RemoveDebris will conduct a few cleanup missions per year, targeting the largest pieces of junk in the most crowded orbits.

But there's geopolitical issues to grapple with as well. International agreements prevent a project carried out by one nation to touch objects that were put into orbit by another country. For example, a UK-led cleanup project couldn't go after a defunct Russian-built rocket booster.

"Currently space debris is a global problem as it affects all nations. Each piece of junk in space is owned by the original operators and orbital debris is not addressed explicitly in current international law," Xander Hall, a mission systems engineer at Airbus, said in an email. "[A]n international effort must be made to claim ownership of the debris and help fund its safe removal." Aglietti is hopeful.

"I think all the stakeholders should get around the table, because it's in everybody's interest to remove that debris," he said.

Related links:

Application form:

ESA’s Space Debris Office:

ESA’s Education Office:

Surrey Space Centre (University of Surrey):

Swiss Space Center (EPFL):

Image, Animations, Video, Text, Credits: ESA/EPFL/University of Surrey/CNN/Jackie Wattles.


Hubble’s Galaxies With Knots, Bursts

NASA - Hubble Space Telescope patch.

Sept. 21, 2018

In the northern constellation of Coma Berenices (Berenice's Hair) lies the impressive Coma Cluster —  a structure of over a thousand galaxies bound together by gravity. Many of these galaxies are elliptical types, as is the brighter of the two galaxies dominating this image: NGC 4860 (center). However, the outskirts of the cluster also host younger spiral galaxies that proudly display their swirling arms. Again, this image shows a wonderful example of such a galaxy in the shape of the beautiful NGC 4858, which can be seen to the left of its bright neighbor and which stands out on account of its unusual, tangled, fiery appearance.

NGC 4858 is special. Rather than being a simple spiral, it is something called a “galaxy aggregate,” which is as the name suggests a central galaxy surrounded by a handful of luminous knots of material that seem to stem from it, extending and tearing away and adding to or altering its overall structure. It is also experiencing an extremely high rate of star formation, possibly triggered by an earlier interaction with another galaxy. As we see it, NGC 4858 is forming stars so frantically that it will use up all of its gas long before it reaches the end of its life. The color of its bright knots indicates that they are formed of hydrogen, which glows in various shades of bright red as it is energized by the many young, hot stars lurking within.

Hubble Space Telescope (HST)

This scene was captured by the NASA/ESA Hubble Space Telescope’s Wide Field Camera 3 (WFC3), a powerful camera designed to explore the evolution of stars and galaxies in the early universe.

For more information about Hubble, visit:

Image, Animation, Credit: ESA/Hubble & NASA/Text: European Space Agency (ESA)/NASA/Karl Hille.


jeudi 20 septembre 2018

Launch Slips One Day as Station Boosts Orbit and Life Science Continues

ISS - Expedition 56 Mission patch.

September 20, 2018

The launch of a Japanese resupply ship to the International Space Station was postponed till Saturday. Meanwhile, the Expedition 56 crew moved on with critical space research and orbital lab maintenance.

Inclement weather at the Tanegashima Space Center in Japan led managers at JAXA (Japan Aerospace Exploration Agency) to postpone the launch of its HTV-7 resupply ship by one day. The HTV-7 is now due to launch atop the H-IIB rocket Saturday at 1:52 p.m. EDT loaded with over five tons of cargo, including new science experiments and science hardware. Its arrival at the station is now planned for Thursday at 7:54 a.m.

Image above: Japan’s HTV-3 resupply ship launches aboard an H-IIB rocket from the Tanegashima Space Center in southern Japan on July 20, 2012, during Expedition 32. Image Credit: JAXA.

The station’s Zvezda service module fired its engines today slightly boosting the space lab’s orbit. The reboost enables a crew swap taking place next month when Expedition 57 begins. Three Expedition 56 crew members will depart on Oct. 4 and return to Earth inside the Soyuz MS-08 spacecraft. A new pair of Expedition 57 crew members will arrive aboard the Soyuz MS-10 crew ship to replace them Oct. 11

Astronauts Ricky Arnold and Serena Auñón-Chancellor conducted a variety of biomedical research today sponsored by scientists from around the world. The duo partnered up for ultrasound scans inside Europe’s Columbus lab module as doctors on the ground monitored in real-time. Arnold also worked throughout the day processing blood and urine samples inside the Human Research Facility’s centrifuge.

International Space Station (ISS). Image Credit: NASA

The biological sample work is supporting a pair of ongoing experiments observing the physiological changes to humans in space. The Repository study analyzes blood and urine samples collected from astronauts before, during and after a space mission. The Biochemical Profile study also researches these samples for markers of astronaut health.

Commander Drew Feustel and Fight Engineer Alexander Gerst worked throughout the orbital lab on housekeeping tasks. Fuestel was in the Unity module installing computer network gear on an EXPRESS rack that can support multiple science experiments. Gerst relocated smoke detectors in the Tranquility module then moved on to computer maintenance in the Destiny lab module.

Small Satellite Demonstrates Possible Solution for 'Space Junk'. Image Credit: NASA

The International Space Station serves as humanity's orbital research platform, conducting a variety of experiments and research projects while in orbit around the planet.

On June 20, 2018, the space station deployed the NanoRacks-Remove Debris satellite into space from outside the Japanese Kibo laboratory module. This technology demonstration was designed to explore using a 3D camera to map the location and speed of orbital debris or "space junk."

The NanoRacks-Remove Debris satellite successfully deployed a net to capture a nanosatellite that simulates debris. Collisions in space could have have serious consequences to the space station and satellites, but research has shown that removing the largest debris significantly reduces the chance of collisions.

Related links:

Expedition 56:

Expedition 57:

Science hardware:

Human Research Facility:


Biochemical Profile:


NanoRacks-Remove Debris:

Small Satellite Missions:



Space Station Research and Technology:

International Space Station (ISS):

Images (mentioned), Text, Credits: NASA/Mark Garcia/Yvette Smith.

Best regards,