jeudi 19 janvier 2017

Don’t Judge an Asteroid by its Cover: Mid-infrared Data from SOFIA Shows Ceres’ True Composition










NASA & DLR - SOFIA patch.

Jan. 19, 2017


Image above: Stratospheric Observatory for Infrared Astronomy or SOFIA on Boeing 747SP. Image Credits: NASA/DLR.

New observations show that Ceres, the largest body in the asteroid belt, does not appear to have the carbon-rich surface composition that space- and ground-based telescopes previously indicated.

Using data primarily from NASA’s Stratospheric Observatory for Infrared Astronomy, SOFIA, a team of astronomers has detected the presence of substantial amounts of material on the surface of Ceres that appear to be fragments of other asteroids containing mostly rocky silicates. These observations are contrary to the currently accepted surface composition classification of Ceres as a carbon-rich body, suggesting that it is cloaked by material that partially disguises its real makeup.

“This study resolves a long-time question about whether asteroid surface material accurately reflects the intrinsic composition of the asteroid,” said Pierre Vernazza, research scientist in the Laboratoire d’Astrophysique de Marseille (LAM–CNRS/AMU). Our results show that by extending observations to the mid-infrared, the asteroid’s underlying composition remains identifiable despite contamination by as much as 20 percent of material from elsewhere,” said Vernazza.

Astronomers have classified the Ceres asteroid, as well as 75 percent of all asteroids, in composition class “C” based on their similar colors. The mid-infrared spectra from SOFIA show that Ceres differs substantially from neighboring C-type asteroids, challenging the conventional understanding of the relationship between Ceres and smaller asteroids.


Image above: The column of material at and just below the surface of dwarf planet Ceres (box) – the top layer contains anhydrous (dry) pyroxene dust accumulated from space mixed in with native hydrous (wet) dust, carbonates, and water ice. (Bottom) Cross section of Ceres showing the surface layers that are the subject of this study plus a watery mantle and a rocky-metallic core. Image Credits: Pierre Vernazza, LAM–CNRS/AMU.

“SOFIA, with its airborne location and sensitive FORCAST instrument, is the only observatory, currently operating or planned, that can make these kind of observations,” said Franck Marchis, planetary astronomer at the SETI Institute and one of Vernazza’s co-authors. “These and future mid-infrared observations are key to understanding the true nature and history of the asteroids.”

Ceres and asteroids are not the only context where material transported from elsewhere has affected the surfaces of solar system bodies. Dramatic examples include Saturn’s two-faced moon Iapetus and the red material seen by New Horizons on Pluto’s moon Charon. Planetary scientists also hypothesize that material from comets and asteroids provided a final veneer to the then-forming Earth that included substantial amounts of water plus the organic substances of the biosphere.

“Models of Ceres based on data collected by NASA’s Dawn spacecraft plus ground-based telescopes indicated substantial amounts of water- and carbon-bearing minerals such as clays and carbonates,” explains Vernazza. “Only the mid-infrared observations made using SOFIA were able to show that both silicate and carbonate materials are present on the surface of Ceres.”

To identify where the pyroxene on the surface of Ceres came from, Vernazza and his collaborators, including researchers from the SETI Institute in Mountain View, and NASA’s Jet Propulsion Laboratory, both in California, turned to interplanetary dust particles (IDPs) that form meteors when they are seen streaking through Earth’s atmosphere. The research team had previously shown that IDPs blasted into space by asteroid collisions are an important source of material accumulated on the surfaces of other asteroids. The implication is that a coating of IDPs has caused Ceres to take on the coloration of some of its dry and rocky neighbors.

This study was published January 16, 2017 in the Astronomical Journal: http://iopscience.iop.org/article/10.3847/1538-3881/153/2/72

NASA is exploring the solar system and beyond to better understand the universe and our place in it. We explore asteroids and comets, which may hold clues about the history of our solar system and how life arose on Earth.

SOFIA is a Boeing 747SP jetliner modified to carry a 100-inch diameter telescope. It is a joint project of NASA and the German Aerospace Center, DLR. NASA’s Ames Research Center in California’s Silicon Valley manages the SOFIA program, science and mission operations in cooperation with the Universities Space Research Association headquartered in Columbia, Maryland, and the German SOFIA Institute (DSI) at the University of Stuttgart. The aircraft is based at NASA’s Armstrong Flight Research Center's Building 703, in Palmdale, California.

Related link:

NASA’s Dawn: http://dawn.jpl.nasa.gov/

For more information about SOFIA, visit: http://www.nasa.gov/sofiahttp://www.dlr.de/en/sofia

Study SOFIA's science mission and scientific instruments at:

http://www.sofia.usra.eduhttp://www.dsi.uni-stuttgart.de/index.en.html

Images (mentioned), Text, Credits: NASA Ames Research Center/Nicholas A. Veronico/Kassandra Bell.

Greetings, Orbiter.ch

Public to Choose Jupiter Picture Sites for NASA Juno












NASA - JUNO Mission logo.

Jan. 19, 2017

Where should NASA’s Juno spacecraft aim its camera during its next close pass of Jupiter on Feb. 2? You can now play a part in the decision. For the first time, members of the public can vote to participate in selecting all pictures to be taken of Jupiter during a Juno flyby. Voting begins Thursday, Jan. 19 at 11 a.m. PST (2 p.m. EST) and concludes on Jan. 23 at 9 a.m. PST (noon EST).


Image above: This amateur-processed image was taken on Dec. 11, 2016, at 9:27 a.m. PST (12:27 p.m. EST), as NASA’s Juno spacecraft performed its third close flyby of Jupiter. Image Credits: NASA/JPL-Caltech/SwRI/MSSS/Eric Jorgensen.

“We are looking forward to people visiting our website and becoming part of the JunoCam imaging team,” said Candy Hansen, Juno co-investigator from the Planetary Science Institute, Tucson, Arizona. “It’s up to the public to determine the best locations in Jupiter’s atmosphere for JunoCam to capture during this flyby.”

NASA’s JunoCam website can be visited at: https://www.missionjuno.swri.edu/junocam

The voting page for this flyby is available at: https://www.missionjuno.swri.edu/junocam/voting/

JunoCam will begin taking pictures as the spacecraft approaches Jupiter’s north pole. Two hours later, the imaging will conclude as the spacecraft completes its close flyby, departing from below the gas giant’s south pole. Juno is currently on its fourth orbit around Jupiter. It takes 53 days for Juno to complete one orbit.

“The pictures JunoCam can take depict a narrow swath of territory the spacecraft flies over, so the points of interest imaged can provide a great amount of detail,” said Hansen. “They play a vital role in helping the Juno science team establish what is going on in Jupiter’s atmosphere at any moment. We are looking forward to seeing what people from outside the science team think is important.”

There will be a new voting page for each upcoming flyby of the mission. On each of the pages, several points of interest will be highlighted that are known to come within the JunoCam field of view during the next close approach. Each participant will get a limited number of votes per orbit to devote to the points of interest he or she wants imaged. After the flyby is complete, the raw images will be posted to the JunoCam website, where the public can perform its own processing.

“It is great to be able to share excitement and science from the Juno mission with the public in this way,” said Scott Bolton, Juno principal investigator from the Southwest Research Institute in San Antonio. “Amateur scientists, artists, students and whole classrooms are providing the world with their unique perspectives of Jupiter. I am really pleased that this website is having such a big impact and allowing so many people to join the Juno science team. The public involvement is really affecting how we look at the most massive planetary inhabitant in our solar system.”


Image above: Artist's concept of the Juno spacecraft orbiting Jupiter. Image Credits: NASA/JPL-Caltech.

During the Feb. 2 flyby, Juno will make its closest approach to Jupiter at 4:58 a.m. PST (7:58 a.m. EST), when the spacecraft is about 2,700 miles (4,300 kilometers) above the planet's swirling clouds.

JunoCam is a color, visible-light camera designed to capture remarkable pictures of Jupiter's poles and cloud tops. As Juno's eyes, it will provide a wide view of Jupiter over the course of the mission, helping to provide context for the spacecraft's other instruments. JunoCam was included on the spacecraft primarily for public engagement purposes, although its images also are helpful to the science team.

NASA's Jet Propulsion Laboratory, Pasadena, California, manages the Juno mission for the principal investigator, Scott Bolton, of Southwest Research Institute in San Antonio. The Juno mission is part of the New Frontiers Program managed by NASA's Marshall Space Flight Center in Huntsville, Alabama, for NASA's Science Mission Directorate. Lockheed Martin Space Systems, Denver, built the spacecraft. JPL is a division of Caltech in Pasadena, California.

More information on the Juno mission is available at:

http://www.nasa.gov/juno

http://www.missionjuno.swri.edu

The public can follow the mission on Facebook and Twitter at:

http://www.facebook.com/NASAJuno

http://www.twitter.com/NASAJuno

Images (mentioned), Text, Credits: NASA/Dwayne Brown/Laurie Cantillo/Tony Greicius/JPL/DC Agle.

Greetings, Orbiter.ch

Pluto Global Color Map & A Colorful ‘Landing’ on Pluto












NASA - New Horizons Mission logo.

Jan. 19, 2017


This new, detailed global mosaic color map of Pluto is based on a series of three color filter images obtained by the Ralph/Multispectral Visual Imaging Camera aboard New Horizons during the NASA spacecraft’s close flyby of Pluto in July 2015. The mosaic shows how Pluto’s large-scale color patterns extend beyond the hemisphere facing New Horizons at closest approach, which were imaged at the highest resolution. North is up; Pluto’s equator roughly bisects the band of dark red terrains running across the lower third of the map. Pluto’s giant, informally named Sputnik Planitia glacier – the left half of Pluto’s signature “heart” feature – is at the center of this map. Note: Click on the image to view in the highest resolution. Image Credits: NASA/JHUAPL/SwRI.

A Colorful ‘Landing’ on Pluto

What would it be like to actually land on Pluto? This movie was made from more than 100 images taken by NASA’s New Horizons spacecraft over six weeks of approach and close flyby in the summer of 2015. The video offers a trip down onto the surface of Pluto -- starting with a distant view of Pluto and its largest moon, Charon -- and leading up to an eventual ride in for a "landing" on the shoreline of Pluto's informally named Sputnik Planitia.

video
A Colorful ‘Landing’ on Pluto

To create a movie that makes viewers feel as if they’re diving into Pluto, mission scientists had to interpolate some of the panchromatic (black and white) frames based on what they know Pluto looks like to make it as smooth and seamless as possible. Low-resolution color from the Ralph color camera aboard New Horizons was then draped over the frames to give the best available, actual color simulation of what it would look like to descend from high altitude to Pluto’s surface.

After a 9.5-year voyage covering more than three billion miles, New Horizons flew through the Pluto system on July 14, 2015, coming within 7,800 miles (12,500 kilometers) of Pluto. Carrying powerful telescopic cameras that could spot features smaller than a football field, New Horizons sent back hundreds of images of Pluto and its moons that show how dynamic and fascinating their surfaces are. Video Credits: NASA/JHUAPL/SwRI.

The original black-and-white “landing” movie can be viewed at:

http://pluto.jhuapl.edu/News-Center/News-Article.php?page=20160714-2

For more information about New Horizons. visit: http://www.nasa.gov/mission_pages/newhorizons/main/index.html

Image (mentioned), Video (mentioned), Text, Credits: NASA/Tricia Talbert.

Greetings, Orbiter.ch

Hubble's Slice of Sagittarius












NASA - Hubble Space Telescope patch.

Jan. 19, 2017


This stunning image, captured by the NASA/ESA Hubble Space Telescope’s Advanced Camera for Surveys (ACS), shows part of the sky in the constellation of Sagittarius (The Archer). The region is rendered in exquisite detail — deep red and bright blue stars are scattered across the frame, set against a background of thousands of more distant stars and galaxies. Two features are particularly striking: the colors of the stars, and the dramatic crosses that burst from the centers of the brightest bodies.

While some of the colors in this frame have been enhanced and tweaked during the process of creating the image from the observational data, different stars do indeed glow in different colors. Stars differ in color according to their surface temperature: very hot stars are blue or white, while cooler stars are redder. They may be cooler because they are smaller, or because they are very old and have entered the red giant phase, when an old star expands and cools dramatically as its core collapses.

The crosses are nothing to do with the stars themselves, and, because Hubble orbits above Earth’s atmosphere, nor are they due to any kind of atmospheric disturbance. They are actually known as diffraction spikes, and are caused by the structure of the telescope itself.

Like all big modern telescopes, Hubble uses mirrors to capture light and form images. Its secondary mirror is supported by struts, called telescope spiders, arranged in a cross formation, and they diffract the incoming light. Diffraction is the slight bending of light as it passes near the edge of an object. Every cross in this image is due to a single set of struts within Hubble itself! Whilst the spikes are technically an inaccuracy, many astrophotographers choose to emphasize and celebrate them as a beautiful feature of their images.

For images and more information about Hubble, visit:

http://hubblesite.org/
http://www.nasa.gov/hubble
http://www.spacetelescope.org/

Image, Text,  Credits: ESA/Hubble & NASA/Text Ccredits: European Space Agency/NASA/Karl Hille.

Best regards, Orbiter.ch

Daphnis Up Close










NASA - Cassini International logo.

Jan. 19, 2017


The wavemaker moon, Daphnis, is featured in this view, taken as NASA's Cassini spacecraft made one of its ring-grazing passes over the outer edges of Saturn's rings on Jan. 16, 2017. This is the closest view of the small moon obtained yet.

Daphnis (5 miles or 8 kilometers across) orbits within the 42-kilometer (26-mile) wide Keeler Gap. Cassini's viewing angle causes the gap to appear narrower than it actually is, due to foreshortening.

The little moon's gravity raises waves in the edges of the gap in both the horizontal and vertical directions. Cassini was able to observe the vertical structures in 2009, around the time of Saturn's equinox (see PIA11654).

Like a couple of Saturn's other small ring moons, Atlas and Pan, Daphnis appears to have a narrow ridge around its equator and a fairly smooth mantle of material on its surface -- likely an accumulation of fine particles from the rings. A few craters are obvious at this resolution. An additional ridge can be seen further north that runs parallel to the equatorial band.

Fine details in the rings are also on display in this image. In particular, a grainy texture is seen in several wide lanes which hints at structures where particles are clumping together. In comparison to the otherwise sharp edges of the Keeler Gap, the wave peak in the gap edge at left has a softened appearance. This is possibly due to the movement of fine ring particles being spread out into the gap following Daphnis' last close approach to that edge on a previous orbit.

A faint, narrow tendril of ring material follows just behind Daphnis (to its left). This may have resulted from a moment when Daphnis drew a packet of material out of the ring, and now that packet is spreading itself out.

The image was taken in visible (green) light with the Cassini spacecraft narrow-angle camera. The view was acquired at a distance of approximately 17,000 miles (28,000 kilometers) from Daphnis and at a Sun-Daphnis-spacecraft, or phase, angle of 71 degrees. Image scale is 551 feet (168 meters) per pixel.

The Cassini mission is a cooperative project of NASA, ESA (the European Space Agency) and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the mission for NASA's Science Mission Directorate, Washington. The Cassini orbiter and its two onboard cameras were designed, developed and assembled at JPL. The imaging operations center is based at the Space Science Institute in Boulder, Colorado.

Related link:

PIA11654: http://photojournal.jpl.nasa.gov/catalog/PIA11654

For more information about the Cassini-Huygens mission visit http://saturn.jpl.nasa.gov and http://www.nasa.gov/cassini. The Cassini imaging team homepage is at http://ciclops.org and http://www.esa.int/Our_Activities/Space_Science/Cassini-Huygens

Image, Text,  Credits: NASA/JPL-Caltech/Space Science Institute/Tony Greicius.

Best regards, Orbiter.ch

Bedrock Exhumed from the Deep












NASA - Mars Reconnaissance Orbiter (MRO) logo.

Jan. 19, 2017


Roadside bedrock outcrops are all too familiar for many who have taken a long road trip through mountainous areas on Earth. Martian craters provide what tectonic mountain building and man's TNT cannot: crater-exposed bedrock outcrops.

Although crater and valley walls offer us roadside-like outcrops from just below the Martian surface, their geometry is not always conducive to orbital views. On the other hand, a crater central peak -- a collection of mountainous rocks that have been brought up from depth, but also rotated and jumbled during the cratering process -- produce some of the most spectacular views of bedrock from orbit.

This color composite cutout shows an example of such bedrock that may originate from as deep as 2 miles beneath the surface. The bedrock at this scale is does not appear to be layered or made up of grains, but has a massive appearance riddled with cross-cutting fractures, some of which have been filled by dark materials and rock fragments (impact melt and breccias) generated by the impact event. A close inspection of the image shows that these light-toned bedrock blocks are partially to fully covered by sand dunes and coated with impact melt bearing breccia flows.

This is a stereo pair with http://www.uahirise.org/ESP_012367_1695

The University of Arizona, Tucson, operates HiRISE, which was built by Ball Aerospace & Technologies Corp., Boulder, Colo. NASA's Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the Mars Reconnaissance Orbiter Project for NASA's Science Mission Directorate, Washington.

Mars Reconnaissance Orbiter (MRO): http://www.nasa.gov/mission_pages/MRO/main/index.html

Image, Text, Credits: NASA/HiRISE/Tony Greicius.

Greetings, Orbiter.ch

mercredi 18 janvier 2017

BASE precisely measures antiproton’s magnetic moment












CERN - European Organization for Nuclear Research logo.

Jan. 18, 2017

In a paper published today in the journal Nature Communications, the BASE collaboration at CERN reports the most precise measurement ever made of the magnetic moment of the antiproton, allowing a fundamental comparison between matter and antimatter. The BASE measurement shows that the magnetic moments of the proton and antiproton are identical, apart from their opposite signs, within the experimental uncertainty of 0.8 parts per million. The result improves the precision of the previous best measurement by the ATRAP collaboration in 2013, also at CERN, by a factor of 6.

At the scale of elementary particles, an almost perfect symmetry between matter and antimatter exists. On cosmological scales, however, the amount of matter outweighs that of antimatter. Understanding this profound contradiction demands that physicists compare the fundamental properties of particles and their antiparticles with high precision.

BASE uses antiprotons from CERN’s unique antimatter factory, the Antiproton Decelerator (AD), and is designed specifically to perform precision measurements of the antimatter counterparts of normal matter particles. The magnetic moment, which determines how a particle behaves when immersed in a magnetic field, is one of the most studied intrinsic characteristics of a particle. Although different particles have different magnetic behaviour, the magnetic moments of protons and antiprotons are supposed to differ only in their sign as a consequence of so-called charge-parity-time symmetry. Any difference in their magnitudes would challenge the Standard Model of particle physics and would offer a glimpse of new physics.


Image above: The BASE collaboration at CERN reports the most precise measurement ever made of the magnetic moment of the antiproton, allowing a fundamental comparison between matter and antimatter (Image: Maximilien Brice/CERN).

To perform the experiments, the BASE collaboration cools down antiprotons to the extremely low temperature of about 1 degree above absolute zero, and traps them using sophisticated electromagnetic containers so that they do not come into contact with matter and annihilate (thanks to such devices, BASE has recently managed to store a bunch of antiprotons for more than one year). From here, antiprotons are fed one-by-one to further traps where their behaviour under magnetic fields allows researchers to determine their intrinsic magnetic moment. Similar techniques have already been successfully applied in the past to electrons and their antimatter partners, positrons, but antiprotons present a much bigger challenge because their magnetic moments are considerably weaker. The new BASE measurement required a specially designed magnetic “bottle” that is more than 1000 times stronger than that used in electron/positron experiments.

“This measurement is so far the culmination point of 10 years of hard work by the BASE team,” said Stefan Ulmer, spokesperson of the BASE collaboration. “Together with other AD experiments, we are really making rapid progress in our understanding of antimatter.”

BASE now plans to measure the antiproton magnetic moment using a new trapping technique that should enable a precision at the level of a few parts per billion – i.e. a factor of 200 to 800 improvement. “The implementation of this method is much more challenging than the method which was used here and will require several additional iteration steps,” says first author Hiroki Nagahama.

Note:

CERN, the European Organization for Nuclear Research, is one of the world’s largest and most respected centres for scientific research. Its business is fundamental physics, finding out what the Universe is made of and how it works. At CERN, the world’s largest and most complex scientific instruments are used to study the basic constituents of matter — the fundamental particles. By studying what happens when these particles collide, physicists learn about the laws of Nature.

The instruments used at CERN are particle accelerators and detectors. Accelerators boost beams of particles to high energies before they are made to collide with each other or with stationary targets. Detectors observe and record the results of these collisions.

Founded in 1954, the CERN Laboratory sits astride the Franco–Swiss border near Geneva. It was one of Europe’s first joint ventures and now has 22 Member States.

Related articles:

ATRAP experiment makes world’s most precise measurement of antiproton magnetic moment
http://press.cern/press-releases/2013/03/atrap-experiment-makes-worlds-most-precise-measurement-antiproton-magnetic

The BASE antiprotons celebrate their first birthday
http://orbiterchspacenews.blogspot.ch/2016/12/the-base-antiprotons-celebrate-their.html

Related links:

Nature Communications: http://dx.doi.org/10.1038/ncomms14084

BASE: http://home.cern/about/experiments/base

Antiproton Decelerator (AD): http://home.cern/about/accelerators/antiproton-decelerator

Elementary particles: http://home.cern/about/physics/standard-model

Antimatter: http://home.cern/topics/antimatter

For more information about European Organization for Nuclear Research (CERN), Visit: http://home.cern/

Image (mentioned), Text, Credits: CERN/Harriet Kim Jarlett.

Best regards, Orbiter.ch