mardi 13 septembre 2016

First physics experiment at HIE-ISOLDE begins

CERN - European Organization for Nuclear Research logo.

Sept. 13, 2016

Image above: Miniball is one of two detection stations receiving beams from HIE-ISOLDE. It’s a very efficient gamma detector array, and will be permanently linked to the beams from HIE-ISOLDE (Image: CERN).

This weekend the first physics experiment started running using radioactive beams from the newly upgraded HIE-ISOLDE facility. ISOLDE, the nuclear research facility at CERN, allows many different experiments to study the properties of atomic nuclei.

The upgrade means the machine can now reach an energy of 5.5MeV per nucleon (MeV/u.), making ISOLDE the only facility in the world capable of investigating nuclei from the middle to heavy end of this energy range.

The experiment is ready to go after the second of two cryomodules (containing the accelerating cavities)was installed – marking the end of the installation of phase one of HIE-ISOLDE.

The HIE-ISOLDE (High Intensity Energy-ISOLDE) Project is a major upgrade of the ISOLDE facility, which will increase the energy, intensity and quality of the beams delivered to scientists.

“It’s a major breakthrough. This is the result of eight years of development and manufacturing. This would not have been possible without the dedication of the technical staff at CERN. But what makes us most proud isn’t that we built a machine, but that we have attracted enthusiastic users to do forefront physics. We are looking forward to this exciting high intensity period,” says Yacine Kadi , leader of the HIE-ISOLDE project.

Image above: The tunnel at HIE-ISOLDE now contains two cryomodules – a unique set up that marks the end of phase one for the HIE-ISOLDE installation. By Spring 2018 the project will have four cryomodules installed and will be able to reach higher energy up to 10 MeV/u a broader range of nuclear physics (Image: Erwin Siesling/ CERN).

This is the second physics run of the project (the first radioactive beam was run on 22 October 2015) but then the machine only had one cryomodule and was capable of running at an energy of just 4.3MeV/u.

Now, with the second cryostat coupled on, the machine is capable of reaching up to 5.5 MeV/u and can investigate the structure of heavier isotopes.

“It is a universal machine that can accelerate and investigate all nuclei from mass number 6 to mass 224 or more and at variable energies,” explains Maria Borge, leader of the ISOLDE group. “This year we’re investigating nuclei with mass number from 9 to 142 – these experiments can only be done at this moment at ISOLDE. At CERN.”

HIE-ISOLDE will be capable of investigating nuclei of all masses when the additional two cryomodules are installed in 2018, as the machine will be able to accelerating them up to energies of 10MeV/u.

The further upgrades mean that, while ISOLDE can currently collect information about the collective properties of isotopes, eventually researchers will be able to use the machine at higher intensities to investigate the properties of individual particles. This can be done at the moment for lower masses, but has never been done before for heavier isotopes.

“The community has grown a lot recently, as people are attracted by the possibilities new higher energies bring. It’s a energy domain that’s not explored much, since no other facility in world can deliver pure beams at these energies,” Borge says.

HIE-ISOLDE will run from now until mid-November. All but one of the seven different experiments planned during this time will use the Miniball detection station. The first experiment will investigate Tin, a special element with two double magic isotopes.

HIE-ISOLDE: nuclear physics now at higher energies

Video above: Eight years since the start of the HIE-ISOLDE project, a new accelerator is in place taking nuclear physics at CERN to higher energies. The first physics run last year marked the start of the project, but after a new cryomodule was installed physicists are able to reach a greater energy of up to 5.5.MeV/u. With physicists setting their sights on even higher energies of 10 MeV/u in the future, they will continue to commission more HIE-ISOLDE accelerating cavities and beamlines in the years to come. (Video: Christoph Madsen/CERN).


CERN, the European Organization for Nuclear Research, is one of the world’s largest and most respected centres for scientific research. Its business is fundamental physics, finding out what the Universe is made of and how it works. At CERN, the world’s largest and most complex scientific instruments are used to study the basic constituents of matter — the fundamental particles. By studying what happens when these particles collide, physicists learn about the laws of Nature.

The instruments used at CERN are particle accelerators and detectors. Accelerators boost beams of particles to high energies before they are made to collide with each other or with stationary targets. Detectors observe and record the results of these collisions.

Founded in 1954, the CERN Laboratory sits astride the Franco–Swiss border near Geneva. It was one of Europe’s first joint ventures and now has 22 Member States.

Related article:

Upgraded nuclear physics facility starts up

Related links:

HIE-ISOLDE facility:

For more information about European Organization for Nuclear Research (CERN), Visit:

Images (mentioned), Video (mentioned), Text, Credits: CERN/Harriet Jarlett.


Aucun commentaire:

Enregistrer un commentaire