mardi 25 août 2015

Crew Begins Unloading Japanese Cargo Ship










ISS - Expedition 44 Mission patch.

August 25, 2015

The crew opened the hatches today to Japan’s fifth “Kounotori” resupply ship (HTV-5) and began unloading new supplies and science gear. The station residents also studied human research and reviewed changes to emergency procedures.


Image above: Astronaut Kimiya Yui seemingly juggles fresh fruit upside down after opening the hatches and entering Japan’s fifth “Kounotori” resupply ship. Image Credit: NASA TV.

The HTV-5 arrived Monday morning carrying cargo and science for the crew and external experiments to be attached to the Kibo laboratory module. The external research gear includes the CALET dark matter study, the NanoRacks External Platform and a flock of 14 CubeSats.

One-Year crew members Scott Kelly and Mikhail Kornienko are 151 days into their mission. The duo participated in research today looking at the long-term effects of microgravity on the human body. They collected blood and urine samples for the Fluid Shifts study which observes physical changes to an astronaut’s eyes during a space mission.

Related links:

CALET dark matter study: http://www.nasa.gov/mission_pages/station/research/experiments/1074.html

NanoRacks External Platform: http://nanoracks.com/products/external-platform/

Fluid Shifts study: http://www.nasa.gov/mission_pages/station/research/experiments/1257.html

CubeSats: https://www.nasa.gov/mission_pages/station/research/news/flock_1/

For more information on the International Space Station and its crews, visit: http://www.nasa.gov/station

Image (mentioned), Text, Credit: NASA.

Greetings, Orbiter.ch

Dawn Sends Sharper Scenes from Ceres












NASA - Dawn Mission patch.

Aug. 25, 2015


Image above: NASA's Dawn spacecraft spotted this tall, conical mountain on Ceres from a distance of 915 miles (1,470 kilometers). The mountain, located in the southern hemisphere, stands 4 miles (6 kilometers) high. Its perimeter is sharply defined, with almost no accumulated debris at the base of the brightly streaked slope. Image Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA.

The closest-yet views of Ceres, delivered by NASA's Dawn spacecraft, show the small world's features in unprecedented detail, including Ceres' tall, conical mountain; crater formation features and narrow, braided fractures.

"Dawn is performing flawlessly in this new orbit as it conducts its ambitious exploration. The spacecraft's view is now three times as sharp as in its previous mapping orbit, revealing exciting new details of this intriguing dwarf planet," said Marc Rayman, Dawn's chief engineer and mission director, based at NASA's Jet Propulsion Laboratory, Pasadena, California.


Image above: NASA's Dawn spacecraft took this image that shows a mountain ridge, near lower left, that lies in the center of Urvara crater on Ceres. Image Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA.

At its current orbital altitude of 915 miles (1,470 kilometers), Dawn takes 11 days to capture and return images of Ceres' whole surface. Each 11-day cycle consists of 14 orbits. Over the next two months, the spacecraft will map the entirety of Ceres six times.

The spacecraft is using its framing camera to extensively map the surface, enabling 3-D modeling. Every image from this orbit has a resolution of 450 feet (140 meters) per pixel, and covers less than 1 percent of the surface of Ceres.

At the same time, Dawn's visible and infrared mapping spectrometer is collecting data that will give scientists a better understanding of the minerals found on Ceres' surface.


Image above: NASA's Dawn Spacecraft took this image of Gaue crater, the large crater on the bottom, on Ceres. Gaue is a Germanic goddess to whom offerings are made in harvesting rye. Image Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA.

Engineers and scientists will also refine their measurements of Ceres' gravity field, which will help mission planners in designing Dawn's next orbit -- its lowest -- as well as the journey to get there. In late October, Dawn will begin spiraling toward this final orbit, which will be at an altitude of 230 miles (375 kilometers).

Dawn is the first mission to visit a dwarf planet, and the first to orbit two distinct solar system targets. It orbited protoplanet Vesta for 14 months in 2011 and 2012, and arrived at Ceres on March 6, 2015.

Dawn's mission is managed by JPL for NASA's Science Mission Directorate in Washington. Dawn is a project of the directorate's Discovery Program, managed by NASA's Marshall Space Flight Center in Huntsville, Alabama. UCLA is responsible for overall Dawn mission science. Orbital ATK Inc., in Dulles, Virginia, designed and built the spacecraft. The German Aerospace Center, Max Planck Institute for Solar System Research, Italian Space Agency and Italian National Astrophysical Institute are international partners on the mission team. For a complete list of mission participants, visit: http://dawn.jpl.nasa.gov/mission

More information about Dawn is available at the following sites: http://dawn.jpl.nasa.gov and http://www.nasa.gov/dawn

Images (mentioned), Text, Credits: NASA/JPL/Elizabeth Landau/Tony Greicius.

Best regards, Orbiter.ch

Gaia's first year of scientific observations












ESA - Gaia Mission patch.

25 August 2015

Last Friday, 21 August, ESA’s billion-star surveyor, Gaia, completed its first year of science observations in its main survey mode.

After launch on 19 December 2013 and a six-month long in-orbit commissioning period, the satellite started routine scientific operations on 25 July 2014. Located at the Lagrange point L2, 1.5 million km from Earth, Gaia surveys stars and many other astronomical objects as it spins, observing circular swathes of the sky. By repeatedly measuring the positions of the stars with extraordinary accuracy, Gaia can tease out their distances and motions through the Milky Way galaxy.

Stellar density map

For the first 28 days, Gaia operated in a special scanning mode that sampled great circles on the sky, but always including the ecliptic poles. This meant that the satellite observed the stars in those regions many times, providing an invaluable database for Gaia’s initial calibration.

At the end of that phase, on 21 August 2014, Gaia commenced its main survey operation, employing a scanning law designed to achieve the best possible coverage of the whole sky.

Since the start of its routine phase, the satellite recorded 272 billion positional or astrometric measurements 54.4 billion brightness or photometric data points, and 5.4 billion spectra.

The Gaia team have spent a busy year processing and analysing these data, en route towards the development of Gaia’s main scientific products, consisting of enormous public catalogues of the positions, distances, motions and other properties of more than a billion stars. Because of the immense volumes of data and their complex nature, this requires a huge effort from expert scientists and software developers distributed across Europe, combined in Gaia’s Data Processing and Analysis Consortium (DPAC).

“The past twelve months have been very intense, but we are getting to grips with the data, and are looking forward to the next four years of nominal operations,” says Timo Prusti, Gaia project scientist at ESA.

“We are just a year away from Gaia's first scheduled data release, an intermediate catalogue planned for the summer of 2016. With the first year of data in our hands, we are now halfway to this milestone, and we’re able to present a few preliminary snapshots to show that the spacecraft is working well and that the data processing is on the right track.”

Stellar parallax

As one example of the ongoing validation, the Gaia team has been able to measure the parallax for an initial sample of two million stars.

Parallax is the apparent motion of a star against a distant background observed over the period of a year and resulting from the Earth's real motion around the Sun; this is also observed by Gaia as it orbits the Sun alongside Earth. But parallax is not the only movement seen by Gaia: the stars are also really moving through space, which is called proper motion.

Gaia has made an average of roughly 14 measurements of each star on the sky thus far, but this is generally not enough to disentangle the parallax and proper motions.

To overcome this, the scientists have combined Gaia data with positions extracted from the Tycho-2 catalogue, based on data taken between 1989 and 1993 by Gaia's predecessor, the Hipparcos satellite.

This restricts the sample to just two million out of the more than one billion that Gaia has observed so far, but yields some useful early insights into the quality of its data.

The nearer a star is to the Sun, the larger its parallax, and thus the parallax measured for a star can be used to determine its distance. In turn, the distance can be used to convert the apparent brightness of the star into its true brightness or ‘absolute luminosity’.

Gaia's first Hertzsprung-Russell diagram

Astronomers plot the absolute luminosities of stars against their temperatures – which are estimated from the stars' colours – to generate a ‘Hertzsprung-Russell diagram’, named for the two early 20th century scientists who recognised that such a diagram could be used as a tool to understand stellar evolution.

“Our first Hertzsprung-Russell diagram, with absolute luminosities based on Gaia’s first year and the Tycho-2 catalogue, and colour information from ground-based observations, gives us a taste of what the mission will deliver in the coming years,” says Lennart Lindegren, professor at the University of Lund and one of the original proposers of the Gaia mission.

As Gaia has been conducting its repeated scans of the sky to measure the motions of stars, it has also been able to detect whether any of them have changed their brightness, and in doing so, has started to discover some very interesting astronomical objects.

Gaia has detected hundreds of transient sources so far, with a supernova being the very first on 30 August 2014. These detections are routinely shared with the community at large as soon as they are spotted in the form of ‘Science Alerts’, enabling rapid follow-up observations to be made using ground-based telescopes in order to determine their nature.

One transient source was seen undergoing a sudden and dramatic outburst that increased its brightness by a factor of five. It turned out that Gaia had discovered a so-called ‘cataclysmic variable’, a system of two stars in which one, a hot white dwarf, is devouring mass from a normal stellar companion, leading to outbursts of light as the material is swallowed. The system also turned out to be an eclipsing binary, in which the relatively larger normal star passes directly in front of the smaller, but brighter white dwarf, periodically obscuring the latter from view as seen from Earth.

Unusually, both stars in this system seem to have plenty of helium and little hydrogen. Gaia’s discovery data and follow-up observations may help astronomers to understand how the two stars lost their hydrogen.

The Cat's Eye Nebula

Gaia has also discovered a multitude of stars whose brightness undergoes more regular changes over time. Many of these discoveries were made between July and August 2014, as Gaia performed many subsequent observations of a few patches of the sky close to the ecliptic poles. This closely sampled sequence of observations made it possible to find and study variable stars located in these regions.

Located close to the south ecliptic pole is the famous Large Magellanic Cloud (LMC), a dwarf galaxy and close companion of our own galaxy, the Milky Way. Gaia has delivered detailed light curves for dozens of RR Lyrae type variable stars in the LMC, and the fine details revealed in them testify to the very high quality of the data.

Another curious object covered during the same mission phase is the Cat’s Eye Nebula, a planetary nebula also known as NGC 6543, which lies close to the north ecliptic pole.

Planetary nebulae are formed when the outer layers of an aging low-mass star are ejected and interact with the surrounding interstellar medium, leaving behind a compact white dwarf. Gaia made over 200 observations of the Cat’s Eye Nebula, and registered over 84 000 detections that accurately trace out the intricate gaseous filaments that such objects are famous for. As its observations continue, Gaia will be able to see the expansion of the nebular knots in this and other planetary nebulae.

Gaia's asteroid detections

Closer to home, Gaia has detected a wealth of asteroids, the small rocky bodies that populate our solar system, mainly between the orbits of Mars and Jupiter. Because they are relatively nearby and orbiting the Sun, asteroids appear to move against the stars in astronomical images, appearing in one snapshot of a given field, but not in images of the same field taken at later times.

Gaia scientists have developed special software to look for these ‘outliers’, matching them with the orbits of known asteroids in order to remove them from the data being used to study stars. But in turn, this information will be used to characterise known asteroids and to discover thousands of new ones.

Finally, in addition to the astrometric and photometric measurements being made by Gaia, it has been collecting spectra for many stars. The basic use of these data is to determine the motions of the stars along the line-of-sight by measuring slight shifts in the positions of absorption lines in their spectra due to the Doppler shift. But in the spectra of some hot stars, Gaia has also seen absorption lines from gas in foreground interstellar material, which will allow the scientists to measure its distribution.

“These early proof-of-concept studies demonstrate the quality of the data collected with Gaia so far and the capabilities of the processing pipeline. The final data products are not quite ready yet, but we are working hard to provide the first of them to the community next year. Watch this space,” concludes Timo.

About Gaia


Gaia is an ESA mission to survey one billion stars in our galaxy and local galactic neighbourhood in order to build the most precise 3D map of the Milky Way and answer questions about its origin and evolution.

The mission’s primary scientific product will be a catalogue with the positions, motions, brightnesses, and colours of the surveyed stars. An intermediate version of the catalogue will be released in 2016. In the meantime, Gaia's observing strategy, with repeated scans of the entire sky, is allowing the discovery and measurement of many transient events across the sky, which are shared with the community at large in the form of Science Alerts.

The nature of the Gaia mission leads to the acquisition of an enormous quantity of complex, extremely precise data, and the data-processing challenge is a huge task in terms of expertise, effort and dedicated computing power. A large pan-European team of expert scientists and software developers, the Data Processing and Analysis Consortium (DPAC), located in and funded by many ESA member states, is responsible for the processing and validation of Gaia's data, with the final objective of producing the Gaia Catalogue. Scientific exploitation of the data will only take place once they are openly released to the community. 

For more information about Gaia mission, visit: http://www.esa.int/Our_Activities/Space_Science/Gaia

More about...

Gaia overview: http://www.esa.int/Our_Activities/Space_Science/Gaia/Gaia_overview

Gaia factsheet: http://www.esa.int/Our_Activities/Space_Science/Gaia/Gaia_factsheet

Frequently asked questions: http://www.esa.int/Our_Activities/Space_Science/Gaia/Frequently_Asked_Questions_about_Gaia

Gaia brochure: http://www.esa.int/About_Us/ESA_Publications/ESA_BR-296_Gaia_ESA_s_galactic_census

Related articles:

How many stars are there in the Universe?: http://orbiterchspacenews.blogspot.ch/2015/07/counting-stars-with-gaia.html

The billion-pixel camera: http://orbiterchspacenews.blogspot.ch/2011/07/eye-of-gaia-billion-pixel-camera-to-map.html

Images, Text, Credits: ESA/Gaia – CC BY-SA 3.0 IGO/Medialab/DPAC/IDT/FL/DPCE/AGIS/NASA/HEIC/The Hubble Heritage Team/STScI/AURA/DPAC/UB/IEEC/CU4, L. Galluccio, F. Mignard, P. Tanga (Observatoire de la Côte d'Azur).

Greetings, Orbiter.ch

lundi 24 août 2015

Cameras Delivered for NASA’s OSIRIS-REx Mission as Launch Prep Continues












NASA - OSIRIS-REx Mission logo.

Aug. 24, 2015

Artist conception of OSIRIS-REx spacecraft approaching asteroid Bennu. Image Credit: NASA

The first U.S. mission to return samples of an asteroid to Earth is another step closer to its fall 2016 launch, with the delivery of three cameras that will image and map the giant space rock.

A camera suite that will allow NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) mission to see a near-Earth asteroid, map it, and pick a safe and interesting place to touch the surface and collect a sample, has arrived at Lockheed Martin Space Systems in Denver for installation to the spacecraft.

“This is another major step in preparing for our mission,” said Mike Donnelly, OSIRIS-REx project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “With the delivery of the camera suite to the spacecraft contractor, we will have our full complement of cameras and spectrometers.”

The OSIRIS-REx mission is scheduled to launch in September 2016 to study Bennu, a near-Earth asteroid that’s about one-third of a mile (approximately 500 meters) across. After rendezvousing with Bennu in 2018, the spacecraft will survey the asteroid, obtain a sample, and return it to Earth in 2023.


Image above: The University of Arizona’s camera suite, OCAMS, sits on a test bench that mimics its arrangement on the OSIRIS-REx spacecraft. The three cameras that compose the instrument – MapCam (left), PolyCam and SamCam – are the eyes of NASA’s OSIRIS-REx mission. They will map the asteroid Bennu, help choose a sample site, and ensure that the sample is correctly stowed on the spacecraft. Image Credits: University of Arizona/Symeon Platts.

The three camera instrument suite, known as OCAMS (OSIRIS-REx Camera Suite), was designed and built by the University of Arizona’s Lunar and Planetary Laboratory. The largest of the three cameras, PolyCam, is a small telescope that will acquire the first images of Bennu from a distance of 1.2 million miles (2 million kilometers) and provide high resolution imaging of the sample site. MapCam will search for satellites and dust plumes around Bennu, map the asteroid in color, and provide images to construct topographic maps. SamCam will document the sample acquisition event and the collected sample.

“PolyCam, MapCam and SamCam will be our mission’s eyes at Bennu,” said Dante Lauretta, principal investigator for OSIRIS-REx at the University of Arizona, Tucson. “OCAMS will provide the imagery we need to complete our mission while the spacecraft is at the asteroid.”

OSIRIS-REx is the first U.S. mission to sample an asteroid, and will return the largest sample from space since the Apollo lunar missions. Scientists expect that Bennu may hold clues to the origin of the solar system and the source of water and organic molecules that may have seeded life on Earth. OSIRIS-REx’s investigation will inform future efforts to develop a mission to mitigate an impact, should one be required.

"The most important goal of these cameras is to maximize our ability to successfully return a sample,” said OCAMS instrument scientist Bashar Rizk from the University of Arizona, Tucson. “Our mission requires a lot of activities during one trip – navigation, mapping, reconnaissance, sample site selection, and sampling.  While we are there, we need the ability to continuously see what is happening around the asteroid in order to make real-time decisions."

NASA's Goddard Space Flight Center in Greenbelt, Maryland, provides overall mission management, systems engineering and safety and mission assurance for OSIRIS-REx. Dante Lauretta is the mission's principal investigator at the University of Arizona, Tucson. Lockheed Martin Space Systems in Denver is building the spacecraft. OSIRIS-REx is the third mission in NASA's New Frontiers Program. NASA's Marshall Space Flight Center in Huntsville, Alabama, manages New Frontiers for the agency's Science Mission Directorate in Washington.

For more information on OSIRIS-REx visit: http://www.nasa.gov/osiris-rex and http://www.asteroidmission.org

Images (mentioned), Text, Credits: NASA's Goddard Space Flight Center/Nancy Neal Jones/Rob Garner.

Greetings, Orbiter.ch

NASA SDO: Images of a Mid-Level Solar Flare













NASA - Solar Dynamics Observatory (SDO) patch.

Aug. 24, 2015


Image above: NASA's Solar Dynamics Observatory captured this image of a mid-level solar flare on the sun – as seen in the bright spot in the lower center of the solar disk on Aug. 24, 2015. The image shows a subset of extreme ultraviolet light that highlights the extremely hot solar material, which is typically colorized in red. Image Credits: NASA/SDO.

The sun emitted a mid-level solar flare, peaking at 3:33 a.m EDT on Aug. 24, 2015. NASA’s Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel.

 NASA's Solar Dynamics Observatory spacecraft. Image Credit: NASA

To see how this event may affect Earth, please visit NOAA's Space Weather Prediction Center at http://spaceweather.gov, the U.S. government's official source for space weather forecasts, alerts, watches and warnings.

This flare is classified as an M 5.6 class flare. M-class flares are a tenth the size of the most intense flares, the X-class flares. The number provides more information about its strength. An M2 is twice as intense as an M1, an M3 is three times as intense, etc.

Updates will be provided as needed.

What is a solar flare?

For answers to this and other space weather questions, please visit the Spaceweather Frequently Asked Questions page: http://www.nasa.gov/mission_pages/sunearth/spaceweather/index.html

Related Links:

View Past Solar Activity: http://www.nasa.gov/mission_pages/sunearth/solar-events-news/index.html

For more information about Solar Dynamics Observatory (SDO), visit: http://www.nasa.gov/mission_pages/sdo/main/index.html

Image (mentioned), Text, Credits: NASA's Goddard Space Flight Center/Karen C. Fox.

Greetings, Orbiter.ch

Japan’s Cargo Ship Installed on Station












JAXA - Kounotori 5 H-II Transfer Vehicle (HTV-5) logo.

August 24, 2015


Image above: Japan’s “Kounotori” resupply ship is installed to the Harmony module. Image Credit: NASA TV.

The Japan Aerospace Exploration Agency (JAXA) Kounotori 5 H-II Transfer Vehicle (HTV-5) was bolted into place on the International Space Station’s Earth-facing port of the Harmony module at 10:02 a.m. EDT.

Using the International Space Station’s robotic arm, Canadarm2, Expedition 44 Flight Engineer Kimiya Yui of the Japan Aerospace Exploration Agency (JAXA) successfully captured JAXA’s Kounotori 5 H-II Transfer Vehicle (HTV-5) at 6:28 a.m. EDT. The space station crew and the robotics officer in mission control in Houston will position HTV-5 for berthing to the orbiting laboratory’s Earth-facing port of the Harmony module.


Image above: Canada’s robotic arm has Japan’s fifth “Kounotori” resupply ship captured in its grips. Image Credit: NASA TV.

The spacecraft’s arrival will support the crew members’ research off the Earth to benefit the Earth. The HTV-5 is delivering more than 8,000 pounds of equipment, supplies and experiments in a pressurized cargo compartment. The unpressurized compartment will deliver the 1,400-pound CALorimetric Electron Telescope (CALET) investigation, an astrophysics mission that will search for signatures of dark matter and provide the highest energy direct measurements of the cosmic ray electron spectrum.

Items to be unloaded during HTV-5’s stay at the orbiting outpost include food, crew provisions, supplies, several Cubesats, and the NanoRacks External Platform capable of housing multiple, diverse investigations mounted to the JAXA Japanese External Facility.

Japanese Cargo Ship Arrives at the Space Station

JAXA and NASA teams adjusted the cargo manifest to deliver additional food supplies and critical components lost in the failure of the seventh SpaceX commercial resupply services mission. The delivery will ensure the crew has plenty of food through the end of 2015. HTV-5 is delivering two multifiltration beds that filter contaminants from the station’s water supply, a Fluids Control and Pump Assembly used for urine processing to support water recycling, a Wring Collector used in conjunction with the on-orbit toilet, a Respiratory Support Pack used in space to provide breathing assistance to an astronaut in the event lung function were impaired and space suit support equipment used during spacewalks.

The HTV-5 will spend five weeks attached to the international outpost, then the cargo vehicle will be filled with trash, detached from the station and sent to burn up in Earth’s atmosphere.

Join the conversation on Twitter by following @Space_Station and the hashtag #HTV5. To learn more about all the ways to connect and collaborate with NASA, visit: http://www.nasa.gov/connect

Related article:

Japanese HTV-5 Cargo Mission Launches and Reaches Orbit: http://orbiterchspacenews.blogspot.ch/2015/08/japanese-htv-5-cargo-mission-launches.html

For more information on the International Space Station and its crews, visit: http://www.nasa.gov/station

Related links:

Japan Aerospace Exploration Agency (JAXA): http://global.jaxa.jp/

KOUNOTORI 5 (HTV-5): http://global.jaxa.jp/projects/rockets/htv/

Images (mentioned), Video, Text, Credits: NASA/NASA TV.

Best regards, Orbiter.ch

Best regards, Orbiter.ch

Filamentary cosmic cloud












ESA - Herschel Mission patch.

August 24, 2015

Feathery filaments in Mon R2

Fierce flashes of light ripple through delicate tendrils of gas in this new image, from ESA’s Herschel space observatory, which shows the dramatic heart of a large and dense cosmic cloud known as Mon R2. This cloud lies some 2700 light-years away and is studded with hot, newly-formed stars.

Packed into the bright centre of this region are several hot ‘bubbles’ of ionised hydrogen, associated with newborn stars situated nearby. Here, gas heated to a temperature of 10 000 °C quickly expands outwards, inflating and enlarging over time. Herschel has explored the bubbles in Mon R2, finding them to have grown over the course of 100 000 to 350 000 years.

This process forms bubble-like cavities that lie within the larger Mon R2 cloud. These are known as HII regions and Mon R2 hosts four of them, clustered together in the central blue-white haze of bright light — one at the very centre, two stretching out like butterfly wings to the top left and bottom right, and another sitting just above the centre.

Each is associated with a different hot and luminous B-type star. These stars can be many times the mass of the Sun and usually appear with a blue hue due to their high temperature.

Astronomers have found that the hot bubbles in Mon R2 are enveloped by vast clouds of cold, dense gas, sitting within the filaments that stretch across the frame. In stark contrast to the gas in the hot bubbles, these clouds can be at temperatures as low as –260 °C, just above absolute zero.

This particular cluster of HII regions has been studied as part of the Herschel imaging survey of OB young stellar objects, or HOBYS, programme. This image combines multiple Herschel observations obtained with the PACS and SPIRE cameras and has been processed to highlight the cloud’s clumpy complex of filaments, visible here in great and dramatic detail.

Herschel space observatory

Formore information about ESA’s Herschel space observatory, visit: http://www.esa.int/Our_Activities/Space_Science/Herschel

Related links:

Particular cluster of HII regions: https://www.researchgate.net/publication/280307505_From_forced_collapse_to_H_ii_region_expansion_in_Mon_R2_Envelope_density_structure_and_age_determination_with_Herschel

Herschel imaging survey of OB young stellar objects, or HOBYS programme: http://www.herschel.fr/cea/hobys/en/

Images, Text, Credits: ESA/Herschel/PACS/SPIRE/HOBYS Key Programme consortium.

Greetings, Orbiter.ch