lundi 3 janvier 2011

NASA Mars Exploration Rovers - The Road Less Traveled














NASA - Mars Exploration Rover "Spirit" (MER-A) patch / NASA - Mars Exploration Rover "Opportunity" (MER-B) patch.

Jan. 3, 2011

 This image, acquired on sol 127 (May 12, 2004), shows the path the rover traveled on its way to the base of the "Columbia Hills."

On Jan. 4, 2004, Spirit--the first of two NASA Mars Exploration Rovers--landed on the Red Planet for what was to be a 90-day mission. This image, acquired on sol 127 (May 12, 2004), shows the path the rover traveled on its way to the base of the "Columbia Hills." The hills can be seen silhouetted against the horizon on the far left side.

Since sol 2210 (March 22, 2010), Spirit has been silent, and the project's scientists continue to listen for Spirit with the Deep Space Network and Mars Odyssey orbiter. The project is also conducting a paging technique called "Sweep & Beep" to stimulate the rover. Since the period of peak solar activity occurs in mid-March 2011, leaving Spirit plenty of occasion to respond. Spirit's sister spacecraft Opportunity continues to explore Mars, arriving in December 2010 at the 80-meter (262-foot) diameter Santa Maria crater on its journey to Endeavour crater.

NASA Spacecraft Provides Travel Tips for Mars Rover

NASA's Mars Opportunity rover is getting important tips from an orbiting spacecraft as it explores areas that might hold clues about past Martian environments.

Opportunity's traverse on Mars from landing day to Santa Maria crater

Researchers are using a mineral-mapping instrument aboard NASA's Mars Reconnaissance Orbiter to help the rover investigate a large ancient crater called Endeavour. The orbiter's Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is providing maps of minerals at Endeavour's rim that are helping the team choose which area to explore first and where to go from there. As Mars Reconnaissance Orbiter orbits more than 241 kilometers high (150 miles), the CRISM instrument provides mapping information for mineral exposures on the surface as small as a tennis court.

Image above: NASA's Mars Exploration Rover Opportunity used its navigation camera to record this view of Santa Maria crater at the end of a drive during the 2,450th Martian day, or sol, of the rover's work on Mars (Dec. 15, 2010). Image credit: NASA / JPL-Caltech.

"This is the first time mineral detections from orbit are being used in tactical decisions about where to drive on Mars," said Ray Arvidson of Washington University in St. Louis. Arvidson is the deputy principal investigator for the Spirit and Opportunity rovers and a co-investigator for CRISM.

Opportunity's science team chose to begin driving the rover toward the 22.5-kilometer-wide (14-mile-wide) crater in 2008, after four years studying other sites in what initially was planned as a three-month mission. The rover has traveled approximately nine miles since setting out for Endeavour crater. It will take several months to reach it.

Navigation camera movie of Opportunity's view towards Endeavour crater

The team plans for Opportunity's exploration of Endeavour to begin at a rim fragment called Cape York. That feature is too low to be visible by the rover, but appears from orbit to be nearly surrounded by water-bearing minerals. The planned route then turns southward toward a higher rim fragment called Cape Tribulation, where CRISM has detected a class of clay minerals not investigated yet by a ground mission. Spacecraft orbiting Mars found these minerals to be widespread on the planet. The presence of clay minerals at Endeavour suggests an earlier and milder wet environment than the very acidic, wet one indicated by previous evidence found by Opportunity.


This map indicates geological units in the region of Mars around a smaller area where NASA's Mars Exploration Rover Opportunity has driven from early 2004 through late 2010. Image credit: NASA / JPL-Caltech / JHU-APL / WUSTL.

"We used to have a disconnect between the scale of identifying minerals from orbit and what missions on the surface could examine," said CRISM team member Janice Bishop of NASA's Ames Research Center in Moffett Field, Calif., and the SETI Institute of Mountain View, Calif. "Now, rovers are driving farther and orbital footprints are getting smaller."

Ten years ago, an imaging spectrometer on NASA's Mars Global Surveyor orbiter found an Oklahoma-sized area with a type of the mineral hematite exposed. This discovery motivated selection of the area as Opportunity's 2004 landing site. Each pixel footprint for that spectrometer was 3.2 kilometers (2 miles) across. CRISM resolves areas about 18 meters (60 feet) across. Last fall, the instrument began using a pixel-overlap technique that provided even better resolution.

Opportunity view of Endeavour crater from panorama camera

Opportunity has just reached a 90-meter-diameter crater (300-foot) called Santa Maria, where CRISM detected a patch of ground with indications of water bound into the mineral. Opportunity will conduct a science campaign at the crater for the next several weeks to compare the ground results to the orbital indications.

"Opportunity has driven farther in the past Martian year than in any previous one," said John Callas, Mars Exploration Rover project manager at NASA's Jet Propulsion Laboratory, Pasadena, Calif.

A Martian year lasts approximately 23 months. During the past Martian year, Opportunity covered more than 12 kilometers (7.5 miles) of the mission's 26 total kilometers (16 miles) traveled since it landed in January 2004. The rover has returned more than 141,000 images.


Image above: NASA's Mars Exploration Rover Opportunity approached Santa Maria Crater in December 2010. With a diameter of about 90 meters (295 feet), this crater is slightly smaller than Endurance Crater, which Opportunity explored for about half a year in 2004. Image credit: NASA / JPL-Caltech / Univ. of Arizona.

Mars Reconnaissance Orbiter reached the Red Planet in 2006 to begin a two-year primary science mission. Its data show Mars had diverse wet environments at many locations for differing durations during the planet's history, and climate-change cycles persist into the present era. The mission has returned more planetary data than all other Mars missions combined.

JPL manages the Mars Exploration Rovers and the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate in Washington. JPL is a division of the California Institute of Technology in Pasadena. The Johns Hopkins University Applied Physics Laboratory in Laurel, Md., manages CRISM.

See news conference images: http://www.nasa.gov/mission_pages/mer/telecon/20101216/index.html

For more information about Mars missions, visit: http://www.nasa.gov/mars

Images, Videos, Text,  Credit: NASA / JPL-Caltech / Univ. of Arizona / JHU-APL / WUSTL.

Best regards, Orbiter.ch