ESO - European Southern Observatory logo.
19 October 2016
VLT Interferometer captures raging winds in famous massive stellar system
Detailed look on Eta Carinae
An international team of astronomers have used the Very Large Telescope Interferometer to image the Eta Carinae star system in the greatest detail ever achieved. They found new and unexpected structures within the binary system, including in the area between the two stars where extremely high velocity stellar winds are colliding. These new insights into this enigmatic star system could lead to a better understanding of the evolution of very massive stars.
Highest resolution image of Eta Carinae
Led by Gerd Weigelt from the Max Planck Institute for Radio Astronomy (MPIfR) in Bonn, a team of astronomers have used the Very Large Telescope Interferometer (VLTI) at ESO’s Paranal Observatory to take a unique image of the Eta Carinae star system in the Carina Nebula.
Digitized Sky Survey Image of Eta Carinae Nebula
This colossal binary system consists of two massive stars orbiting each other and is very active, producing stellar winds which travel at velocities of up to ten million kilometres per hour [1]. The zone between the two stars where the winds from each collide is very turbulent, but until now it could not be studied.
The Carina Nebula in the constellation of Carina
The power of the Eta Carinae binary pair creates dramatic phenomena. A “Great Eruption” in the system was observed by astronomers in the 1830s. We now know that this was caused by the larger star of the pair expelling huge amounts of gas and dust in a short amount of time, which led to the distinctive lobes, known as the Homunculus Nebula, that we see in the system today. The combined effect of the two stellar winds as they smash into each other at extreme speeds is to create temperatures of millions of degrees and intense deluges of X-ray radiation.
Panoramic view of the WR 22 and Eta Carinae regions of the Carina Nebula*
The central area where the winds collide is so comparatively tiny — a thousand times smaller than the Homunculus Nebula — that telescopes in space and on the ground so far have not been able to image them in detail. The team has now utilised the powerful resolving ability of the VLTI instrument AMBER to peer into this violent realm for the first time. A clever combination — an interferometer — of three of the four Auxiliary Telescopes at the VLT lead to a tenfold increase in resolving power in comparison to a single VLT Unit Telescope. This delivered the sharpest ever image of the system and yielded unexpected results about its internal structures.
One Picture, Many Stories
The new VLTI image clearly depict the structure which exists between the two Eta Carinae-stars. An unexpected fan-shaped structure was observed where the raging wind from the smaller, hotter star crashes into the denser wind from the larger of the pair.
The Carina Nebula imaged by the VLT Survey Telescope
“Our dreams came true, because we can now get extremely sharp images in the infrared. The VLTI provides us with a unique opportunity to improve our physical understanding of Eta Carinae and many other key objects”, says Gerd Weigelt.
Eta Carinae
In addition to the imaging, the spectral observations of the collision zone made it possible to measure the velocities of the intense stellar winds [2]. Using these velocities, the team of astronomers were able to produce more accurate computer models of the internal structure of this fascinating stellar system, which will help increase our understanding of how these kind of extremely high mass stars lose mass as they evolve.
Zoom on Eta Carinae
Team member Dieter Schertl (MPIfR) looks forward: “The new VLTI instruments GRAVITY and MATISSE will allow us to get interferometric images with even higher precision and over a wider wavelength range. This wide wavelength range is needed to derive the physical properties of many astronomical objects.”
Animation of Eta Carinae and its surrounding
Notes:
[1] The two stars are so massive and bright that the radiation they produce rips off their surfaces and spews them into space. This expulsion of stellar material is referred to as stellar “wind”, and it can travel at millions of kilometres per hour.
[2] Measurements were done through the Doppler effect. Astronomers use the Doppler effect (or shifts) to calculate precisely how fast stars and other astronomical objects move toward or away from Earth. The movement of an object towards or away from us causes a slight shift in its spectral lines. The velocity of the motion can be calculated from this shift.
More information:
This research was presented in a paper to appear in Astronomy and Astrophysics.
The team is composed of G. Weigelt (Max Planck Institute for Radio Astronomy, Germany), K.-H. Hofmann (Max Planck Institute for Radio Astronomy, Germany), D. Schertl (Max Planck Institute for Radio Astronomy, Germany), N. Clementel (South African Astronomical Observatory, South Africa) , M.F. Corcoran (Goddard Space Flight Center, USA; Universities Space Research Association, USA), A. Damineli (Universidade de São Paulo, Brazil ), W.-J. de Wit (European Southern Observatory, Chile), R. Grellmann (Universität zu Köln, Germany), J. Groh (The University of Dublin, Ireland ), S. Guieu (European Southern Observatory, Chile), T. Gull (Goddard Space Flight Center, USA), M. Heininger (Max Planck Institute for Radio Astronomy, Germany) , D.J. Hillier (University of Pittsburgh, USA), C.A. Hummel (European Southern Observatory, Germany), S. Kraus (University of Exeter, UK), T. Madura (Goddard Space Flight Center, USA), A. Mehner (European Southern Observatory, Chile), A. Mérand ( European Southern Observatory, Chile), F. Millour (Université de Nice Sophia Antipolis, France), A.F.J. Moffat (Université de Montréal, Canada), K. Ohnaka (Universidad Católica del Norte, Chile), F. Patru (Osservatorio Astrofisico di Arcetri, Italy), R.G. Petrov (Université de Nice Sophia Antipolis, France), S. Rengaswamy (Indian Institute of Astrophysics, India) , N.D. Richardson (The University of Toledo, USA), T. Rivinius (European Southern Observatory, Chile), M. Schöller (European Southern Observatory, Germany), M. Teodoro (Goddard Space Flight Center, USA) , and M. Wittkowski (European Southern Observatory, Germany)
ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky”.
Links:
Research paper: http://www.eso.org/public/archives/releases/sciencepapers/eso1637/eso1637a.pdf
Photos of the VLT: http://www.eso.org/public/images/archive/category/paranal/
3D model of the Homunculus Nebula: http://www.eso.org/public/products/models3d/3dmodel_004/
Simulations of Eta Carinae: https://svs.gsfc.nasa.gov/11725
Very Large Telescope Interferometer (VLTI): http://eso.org/vlt
VLTI instrument AMBER: https://www.eso.org/public/teles-instr/vlt/vlt-instr/amber/
VLT Unit Telescope: https://www.eso.org/public/teles-instr/vlt/vlt-names/
Max Planck Institute for Radio Astronomy (MPIfR): http://www.mpifr-bonn.mpg.de/2169/en
Images, Text, Credits: ESO/Norbert Junkes/Mathias Jäger/Max-Planck-Institut für Radioastronomie/Gerd Weigelt/Dieter Schertl/Digitized Sky Survey 2. Acknowledgment: Davide De Martin/IAU and Sky & Telescope/Acknowledgement: VPHAS+ Consortium/Cambridge Astronomical Survey Unit/Videos: ESO, Digitized Sky Survey 2, A. Fuji, Nick Risinger (skysurvey.org), ESA/Hubble, T. Preibisch. Acknowledgement: VPHAS+ Consortium/Cambridge Astronomical Survey Unit. Music: Johan B. Monell (www.johanmonell.com)/NASA Goddard CI Lab.
Best regards, Orbiter.ch