ESO - European Southern Observatory logo.
19 December 2019
Gas halo observed by MUSE surrounding a galaxy merger seen by ALMA
Astronomers using ESO’s Very Large Telescope have observed reservoirs of cool gas around some of the earliest galaxies in the Universe. These gas halos are the perfect food for supermassive black holes at the centre of these galaxies, which are now seen as they were over 12.5 billion years ago. This food storage might explain how these cosmic monsters grew so fast during a period in the Universe’s history known as the Cosmic Dawn.
“We are now able to demonstrate, for the first time, that primordial galaxies do have enough food in their environments to sustain both the growth of supermassive black holes and vigorous star formation,” says Emanuele Paolo Farina, of the Max Planck Institute for Astronomy in Heidelberg, Germany, who led the research published today in The Astrophysical Journal. “This adds a fundamental piece to the puzzle that astronomers are building to picture how cosmic structures formed more than 12 billion years ago.”
Artistic impression of a distant quasar surrounded by a gas halo
Astronomers have wondered how supermassive black holes were able to grow so large so early on in the history of the Universe. "The presence of these early monsters, with masses several billion times the mass of our Sun, is a big mystery," says Farina, who is also affiliated with the Max Planck Institute for Astrophysics in Garching bei München. It means that the first black holes, which might have formed from the collapse of the first stars, must have grown very fast. But, until now, astronomers had not spotted ‘black hole food’ — gas and dust — in large enough quantities to explain this rapid growth.
To complicate matters further, previous observations with ALMA, the Atacama Large Millimeter/submillimeter Array, revealed a lot of dust and gas in these early galaxies that fuelled rapid star formation. These ALMA observations suggested that there could be little left over to feed a black hole.
3D view of gas halo observed by MUSE surrounding a galaxy merger seen by ALMA
To solve this mystery, Farina and his colleagues used the MUSE instrument on ESO’s Very Large Telescope (VLT) in the Chilean Atacama Desert to study quasars — extremely bright objects powered by supermassive black holes which lie at the centre of massive galaxies. The study surveyed 31 quasars that are seen as they were more than 12.5 billion years ago, at a time when the Universe was still an infant, only about 870 million years old. This is one of the largest samples of quasars from this early on in the history of the Universe to be surveyed.
The astronomers found that 12 quasars were surrounded by enormous gas reservoirs: halos of cool, dense hydrogen gas extending 100 000 light years from the central black holes and with billions of times the mass of the Sun. The team, from Germany, the US, Italy and Chile, also found that these gas halos were tightly bound to the galaxies, providing the perfect food source to sustain both the growth of supermassive black holes and vigorous star formation.
Artistic animation of a distant quasar surrounded by a gas halo
The research was possible thanks to the superb sensitivity of MUSE, the Multi Unit Spectroscopic Explorer, on ESO’s VLT, which Farina says was “a game changer” in the study of quasars. “In a matter of a few hours per target, we were able to delve into the surroundings of the most massive and voracious black holes present in the young Universe,” he adds. While quasars are bright, the gas reservoirs around them are much harder to observe. But MUSE could detect the faint glow of the hydrogen gas in the halos, allowing astronomers to finally reveal the food stashes that power supermassive black holes in the early Universe.
In the future, ESO’s Extremely Large Telescope (ELT) will help scientists reveal even more details about galaxies and supermassive black holes in the first couple of billion years after the Big Bang. “With the power of the ELT, we will be able to delve even deeper into the early Universe to find many more such gas nebulae,” Farina concludes.
More information:
This research is presented in a paper to appear in The Astrophysical Journal.
The team is composed of Emanuele Paolo Farina (Max Planck Institute for Astronomy [MPIA], Heidelberg, Germany and Max Planck Institute for Astrophysics [MPA], Garching bei München, Germany), Fabrizio Arrigoni-Battaia (MPA), Tiago Costa (MPA), Fabian Walter (MPIA), Joseph F. Hennawi (MPIA and Department of Physics, University of California, Santa Barbara, US [UCSB Physics]), Anna-Christina Eilers (MPIA), Alyssa B. Drake (MPIA), Roberto Decarli (Astrophysics and Space Science Observatory of Bologna, Italian National Institute for Astrophysics [INAF], Bologna, Italy), Thales A. Gutcke (MPA), Chiara Mazzucchelli (European Southern Observatory, Vitacura, Chile), Marcel Neeleman (MPIA), Iskren Georgiev (MPIA), Eduardo Bañados (MPIA), Frederick B. Davies (UCSB Physics), Xiaohui Fan (Steward Observatory, University of Arizona, Tucson, US [Steward]), Masafusa Onoue (MPIA), Jan-Torge Schindler (MPIA), Bram P. Venemans (MPIA), Feige Wang (UCSB Physics), Jinyi Yang (Steward), Sebastian Rabien (Max Planck Institute for Extraterrestrial Physics, Garching bei München, Germany), and Lorenzo Busoni (INAF-Arcetri Astrophysical Observatory, Florence, Italy).
ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It has 16 Member States: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Ireland, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile and with Australia as a Strategic Partner. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope and its world-leading Very Large Telescope Interferometer as well as two survey telescopes, VISTA working in the infrared and the visible-light VLT Survey Telescope. Also at Paranal ESO will host and operate the Cherenkov Telescope Array South, the world’s largest and most sensitive gamma-ray observatory. ESO is also a major partner in two facilities on Chajnantor, APEX and ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre Extremely Large Telescope, the ELT, which will become “the world’s biggest eye on the sky”.
Links:
ESOcast 214 Light: A Black Holes' Breakfast at the Cosmic Dawn: https://www.eso.org/public/videos/eso1921a/
Research paper: https://www.eso.org/public/archives/releases/sciencepapers/eso1921/eso1921a.pdf
Project website: https://emastro.github.io/requiem/index.html
Photos of the VLT: http://www.eso.org/public/images/archive/category/paranal/
Atacama Large Millimeter/submillimeter Array (ALMA): https://www.eso.org/public/teles-instr/alma/
ESO’s Extremely Large Telescope (ELT): https://www.eso.org/public/teles-instr/elt/
MUSE instrument: https://www.eso.org/public/teles-instr/paranal-observatory/vlt/vlt-instr/muse/
Images, Text, Credits: ESO/Bárbara Ferreira/Max Planck Institute for Astronomy and Max Planck Institute for Astrophysics/Emanuele Paolo Farina/ESO/Farina et al.; ALMA (ESO/NAOJ/NRAO), Decarli et al./M. Kornmesser/Videos: ESO/Farina et al.; ALMA (ESO/NAOJ/NRAO), Decarli et al.; L. Calçada/ESO/M. Kornmesser.
Greetings, Orbiter.ch